90 likes | 216 Views
If f’(x) changes from + to – at x=c, then f(x) has a ________ at x=c. local min local max inflection point discontinuity. If f’(c) =0 and f’’(c) < 0, then f(x) has a ________ at x=c. local min local max inflection point discontinuity. Find the horizontal asymptote for.
E N D
If f’(x) changes from + to – at x=c, then f(x) has a ________ at x=c. • local min • local max • inflection point • discontinuity
If f’(c) =0 and f’’(c) < 0, then f(x) has a ________ at x=c. • local min • local max • inflection point • discontinuity
0 • + infinity (DNE) • - infinity (DNE) • 1
0 • + infinity (DNE) • - infinity (DNE) • 1
0 • + infinity (DNE) • - infinity (DNE) • 1
0 • + infinity (DNE) • - infinity (DNE) • 1
0 • + infinity (DNE) • - infinity (DNE) • 1