240 likes | 354 Views
Chapter 3 Functions. P181(Sixth Edition) P168(Fifth Edition). Theorem 3.1: Let f be an everywhere function from A to B, and A 1 and A 2 be subsets of A. Then (1)If A 1 A 2 , then f (A 1 ) f (A 2 ) (2) f (A 1 ∩A 2 ) f (A 1 )∩ f (A 2 )
E N D
Chapter 3 Functions P181(Sixth Edition) P168(Fifth Edition)
Theorem 3.1: Let f be an everywhere function from A to B, and A1 and A2 be subsets of A. Then • (1)If A1A2, then f(A1) f(A2) • (2) f(A1∩A2) f(A1)∩f(A2) • (3) f(A1∪A2)= f(A1)∪f(A2) • (4) f(A1)- f(A2) f(A1-A2) • Proof: (3)(a) f(A1)∪f (A2) f(A1∪A2) • (b) f(A1∪A2) f(A1)∪f (A2)
(4) f (A1)- f (A2) f (A1-A2) • for any y f (A1)-f (A2)
Theorem 3.2:Let f be an everywhere function from A to B, and AiA(i=1,2,…n). Then
2. Special Types of functions • Definition 3.2:Let A be an arbitrary nonempty set. The identity function on A, denoted by IA, is defined by IA(a)=a. • Definition 3.3.: Let f be an everywhere function from A to B. Then we say that f is onto(surjective) if Rf=B. We say that f is one to one(injective) if we cannot have f(a1)=f(a2) for two distinct elements a1 and a2 of A. Finally, we say that f is one-to-one correspondence(bijection), if f is onto and one-to-one. • The definition of one to one may be restated in the following equivalent form: • If f(a1)=f(a2) then a1=a2 for all a1, a2A Or • If a1a2 then f(a1)f(a2) for all a1, a2A
Example:1) Let f: R(the set of real numbers)→C(the set of complex number), f(a)=i|a|; • 2)Let g: R(the set of real numbers)→C(the set of complex number), g(a)=ia; • 3)Let h:Z→Zm={0,1,…m-1}, h(a)=a mod m • onto ,one to one?
3.2 Composite functions and Inverse functions • 1.Composite functions • Relation ,Composition, • Theorem3.3: Let g be a (everywhere)function from A to B, and f be a (everywhere)function from B to C. Then composite relation f g is a (everywhere)function from A to C.
Proof: (1)For every aA, If there exist x,yC such that (a,x)f gand (a,y)f g,then x=y? • (2)For any aA, there exists cC such that (a,c) f g ? • Definition 3.4: Let g be a (everywhere) function from A to B, and f be a (everywhere) function from B to C. Then composite relation f g is called a (everywhere) function from A to C, we write f g:A→C. If aA, then(f g)(a)=f(g(a)).
Since composition of relations has been shown to be associative (Theorem 2.), we have as a special case the following theorem. Theorem 3.4: Let f be a (everywhere) function from A to B, and g be a (everywhere) function from B to C, and h be a (everywhere) function from C to D. Then h(gf )=(hg)f
Theorem 3.5: Let f be an everywhere function from A to B. Then (i)f IA=f. (ii)IB f = f. Proof. Concerning(i), let aA, (f IA)(a) ?=f(a). Property (ii) is proved similarly to property (i).
Theorem 3.6: Let g be an everywhere function from A to B, and f be an everywhere function from B to C. Then (1)if f and g are onto , then f g is also onto. (2)If f and g are one to one, then f g is also one to one. (3)If f and g are one-to-one correspondence, then f g is also one-to-one correspondence Proof: (1)for every cC, there exists aA such that f g(a)=c
(2)one to one:if ab,then f g(a)? f g(b) (3)f and g are one-to-one correspondence, f and g are onto. By (1), f g are onto. By (2), f g are also one to one. Thus f g is also one-to-one correspondence.
2. Inverse functions Inverse relation, Function is a relation Is the function’s inverse relation a function? No Example: A={1,2,3},B={a,b}, f:A→B, f ={(1,a),(2,b),(3,b)} is a function, but inverse relation f -1={(a,1),(b,2),(b,3)} is not a function.
Theorem 3.7: :(a) Let f be a function from A to B, Inverse relation f -1 is a function from B to A if only if f is one to one (b) Let f be an everywhere function from A to B, Inverse relation f -1 is an everywhere function from B to A if only if f is one-to-one correspondence. Proof: (a)(1)If f –1 is a function, then f is one to one If there exist a1,a2A such that f(a1)=f(a2)=bB, then a1?=a2 (2)If f is one to one,then f –1 is a function f -1 is a function For bB,If there exist a1,a2A such that (b,a1)f -1 and (b,a2) f -1,then a1?=a2
Proof: (b)(1)If f –1 is an everywhere function, then f is one-to-one correspondence. (i)f is onto. For any bB,there exists aA such that f (a)=?b (ii)f is one to one. If there exist a1,a2A such that f (a1)=f (a2)=bB, then a1?=a2 (2)If f is one-to-one correspondence,then f –1 is an everywhere function f -1 is an everywhere function, for any bB,there exists one and only aA so that (b,a) f -1. For any bB, there exists aA such that (b,a)?f -1. For bB,If there exist a1,a2A such that (b,a1)f -1 and (b,a2) f -1,then a1?=a2
Definition 3.5: Let f be one-to-one (correspondence) between A and B. We say that inverse relation f -1 is the (everywhere) inverse function of f. We denoted f -1:B→A. And if f (a)=b then f -1(b)=a. Theorem 3.8: Let f be one-to-one correspondence between A and B. Then the inverse function f -1 is also one-to-one correspondence. Proof: (1) f –1is onto (f –1 is an everywhere function from B to A For any aA,there exists bB such that f -1(b)=a) (2)f –1 is one to one For any b1,b2B, if b1b2 then f -1(b1) f -1(b2). If f:A→B is one-to-one correspondence, then f -1:B→A is also one-to-one correspondence. The function f is called invertible.
Theorem 3.9: Let f be one-to-one correspondence between A and B. • Then • (1)(f -1)-1= f • (2)f -1 f=IA • (3)f f -1=IB • Proof: (1)(f -1)-1= f • (2)f -1 f=IA • Let f:A→B and g:B→A, • Is g the inverse function of f ? • f g?=IB and g f ?=IA
Theorem 3.10:Let g be one-to-one correspondence between A and B, and f be one-to-one correspondence between B and C. Then (fg)-1= g-1f -1 • Proof: By Theorem 3.6, f g is one-to-one correspondence from A to C • Similarly, By theorem 3.7, 3.8, g-1 is a one-to-one correspondence function from B to A, and f –1 is a one-to-one correspondence function from C to B.
Theorem 3.11: Let A and B be two finite set with |A|=|B|, and let f be an everywhere function from A to B. Then • (1)If f is one to one, then f is onto. • (2)If f is onto, then f is one to one. • The prove are left your exercises(p189.36)
3.3 The Characteristic function of the set • function from universal set to {0,1} • Definition 3.6: Let U be the universal set, and let AU. The characteristic function of A is defined as a function from U to {0,1} by the following:
Theorem 3.12: Let A and B be subsets of the universal set. Then, for any xU, we have • (1)A(x)0 if only if A= • (2)A(x) 1 if only if A=U; • (3)A(x)≦B(x) if only if AB; • (4)A(x) B(x) if only if A=B; • (5)A∩B(x)=A(x)B(x); • (6)A∪B(x)=A(x)+B(x)-A∩B(x);
Exercise:P188 9,10,13,14, 21,22,28, 32,33,36,37,38(Sixth) • OR P176 9,10,13,14, 21,22,28, 32,33,36,37,38(Fifth) • Next: Cardinality, Paradox • Pigeonhole principle P100(Sixth)P88 3.3(Fifth)