1 / 20

Different Forces and Applications of Newton’s Laws

Different Forces and Applications of Newton’s Laws. Types of Forces. Normal Force. Weight vs. mass (gravitational mass = inertial mass). Apparent weight vs. true weight mg , g = 9.8 m/s 2. Note: weight varies with location on earth, moon,…. g moon =1.6 m/s 2. The Tension Force.

tarala
Download Presentation

Different Forces and Applications of Newton’s Laws

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Different Forces and Applications of Newton’s Laws Types of Forces

  2. Normal Force Weight vs. mass(gravitational mass = inertial mass) Apparent weight vs. true weight mg , g = 9.8 m/s2 Note: weight varies with location on earth, moon,… gmoon=1.6 m/s2

  3. The Tension Force Massless rope: -T1=T2=mGg Massive rope: -T1=T2+mRg=(mG+mR)g>T2 Acceleration with massive rope and idealization of massless rope Pulley (massless & frictionless) mB mR X TR= (mB+ mR)a > TB= mB a = TR – mR a

  4. Static and Kinetic Frictional Forces

  5. Fluid Resistance and Terminal Speed Linear resistance at low speed f = k v Drag at high speed f= D v2 due to turbulence Newton’s second law: ma = mg – kv Terminal speed (a→0): vt = mg / k (for f=kv) , vt = (mg/D)1/2 (for f=Dv2) Baseball trajectory is greatly affected by air drag ! v0=50m/s

  6. Applying Newton’s Laws for Equilibrium: Nonequilibrium:

  7. Replacing an Engine (Equilibrium) Find: Tension forces T1 and T2 Another solution: Choose

  8. Plane in Equilibrium

  9. Example 5.9: Passenger in an elevator y Data: FN= 620 N, w = 650 N Find: (a) reaction forces to Fn and w; (b) passenger mass m; (c) acceleration ay . Solution: 0 • Normal force –FN exerted on the floor and • gravitational force –w exerted on the earth. • (b) m = w / g = 650 N / 9.8 m/s2 = 64 kg • (c) Newton’s second law: may = FN – w , • ay = (FN – w) / m = g (FN – w) / w = • = 9.8 m/s2 (620 N – 650 N)/650 N = - 0.45 m/s2 Center of the Earth

  10. Exam Example 9: How to measure friction by meter and clock? d) Find also the works done on the block by friction and by gravity as well as the total work done on the block if its mass is m = 2 kg (problem 6.68).

  11. d)Work done by friction: Wf = -fkL = -μk FN L = -L μk mg cosθmax = -9 J ; work done by gravity:Wg = mgH = 10 J ; total work: W = mv||2 /2 = 2 kg (1m/s)2 /2 = 1 J = Wg + Wf = 10 J + 9 J = 1 J

  12. Hauling a Crate with Acceleration

  13. Exam Example 10: Blocks on the Inclines (problem 5.92) Data: m1, m2, μk, α1, α2, vx<0 m1 Find: (a) fk1x and fk2x ; (b) T1x and T2x ; (c) acceleration ax . X m2 Solution: Newton’s second law for block 1: FN1 = m1g cosα1 , m1ax= T1x+fk1x-m1g sinα1(1) block 2: FN2 = m2g cosα2 , m2ax= T2 x+fk2x+ m2g sinα2(2) α1 α2 X (a) fk1x= sμkFN1= sμkm1g cosα1 ; fk2x= sμkFN2= sμkm2g cosα2; s = -vx/v (c) T1x=-T2x, Eqs.(1)&(2)→ (b)

  14. Exam Example 11: Hoisting a Scaffold Y Data: m = 200 kg Find: (a) a force F to keep scaffold in rest; (b) an acceleration ay if Fy = - 400 N; (c) a length of rope in a scaffold that would allow it to go downward by 10 m 0 Solution Newton’s second law: m • Newton’s third law: Fy = - Ty , • in rest ay = 0→ F(a=0)= W/5= mg/5 =392 N • (b) ay= (5T-mg)/m = 5 (-Fy)/m – g = 0.2 m/s2 • (c) L = 5·10 m = 50 m (pulley’s geometry)

  15. Dynamics of Circular Motion Uniform circular motion: θ R Dimensionless unit for an angle: Period T=2πR/v , ac = v2/R = 4π2R/T2 Cyclic frequency f=1/T , units: [f] = Hz = 1/s Angular frequency ω = 2πf = 2π/T, units: [ω]=rad·Hz=rad/s Example: 100 revolutions per second ↔ f=1/T=100 Hz or T=1s/100=0.01 s Non-uniform circular motion: equation for a duration of one revolution T

  16. Centripetal Force Sources of the centripetal force Rounding a flat curve (problem 5.44)

  17. Exam Example 12: • Data: L, β, m • Find: • tension force F; • speed v; • period T. The conical pendulum(example 5.20) or a bead sliding on a vertical hoop (problem 5.119) Solution: Newton’s second law R Two equations with two unknowns: F,v Centripetal force along x: Equilibrium along y:

  18. A pilot banks or tilts the plane at an angle θ to create the centripetal force Fc = L·sinθ Lifting force

  19. Rounding a Banked Curve Example 5.22 (car racing): r = 316 m , θ = 31o

  20. Uniform circular motion in a vertical circle Find: Normal force nT Newton’s second law Top: nT – mg = -mac Note: If v2 >gR , the passenger will be catapulted ! Bottom: nB – mg = +mac

More Related