1 / 23

Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration

Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration. Makhlouf Hadji Ingénieur de Recherche m akhlouf.hadji@irt-systemx.fr. FONDATION DE COOPERATION SCIENTIFIQUE. NOS VALEURS. E xcellence Talents Résultats Echanges. S ouplesse Fonctionnement Partenariat

taran
Download Presentation

Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration Makhlouf Hadji Ingénieur de Recherche makhlouf.hadji@irt-systemx.fr

  2. FONDATION DE COOPERATION SCIENTIFIQUE

  3. NOS VALEURS • Excellence • Talents • Résultats • Echanges • Souplesse • Fonctionnement • Partenariat • Projets • Rigueur • Propriété Intellectuelle • Confidentialité • Exécution

  4. PROGRAMMES DE R&D Ingénierie numérique des Systèmes et Composants

  5. PROJETS R&D Projets opérationnels depuis le lancement 29 ETP/an sur 3 ans Partenaires Industriels Partenaires Académiques Thèses 110 42 12 Projets Opérationnels M€ Financement Industriel 9 15,5

  6. I- Smart Placement in Clouds

  7. Infrastructure servers Smart Placement in Clouds VM Placement problem Problem:Based on allocating and hostingN VMson a physical infrastructure of X Serveurs, whatis the best manner to optimally place workloads to minimizedifferent infrastructure costs ? Non optimal placement ESX 1 ESX 2… ESX N VMsdemand management Cloud End-Users Optimal placement ESX 1 ESX 2… ESX N VMs placement strategy ??? Benefits • Resourcesoptimization, • Minimization of infrastructure costs, • Energyconsumptionoptimization. ESX 1 ESX 2… ESX N Define the best strategy to place VMsworkloadsleading to optimallyreduce infrastructure costs. Challenges of the problem: • Exponential number of cases to enumerate.

  8. Smart Placement in Clouds • French Providers Point of View

  9. Infrastructure serveurs Smart Placement in Clouds Due to fluctuations in users’ demands, we use Auto-Regressive (AR(k)) process, to handlewith future demands: Gestion de la demande de VM Utilisateurs des services Cloud Forcasting & Scheduling large medium small small ProblemComplexity : NP-Hard Problem: One canconstructeasily a plynomialreductionfrom the NP-Hard notaryproblem of the Bin-Packing. ESX 1 ESX 2… ESX N

  10. Smart Placement in Clouds Mathematical formulation: Formulation as ILP: The correspondingmathematical model is an IntegerLinearProgramming: difficulties to characterize the convexhull of the consideredproblem and the optimal solution.

  11. Smart Placement in Clouds Minimum Cost Maximum Flow Algorithm Instance i (1; 0) (1; 0,33) (2; 0) (2; 0,23) (1; 0) (Di; 0) (Di; 0) (1; 0,14) S T Legend: (capacity; cost)

  12. Smart Placement in Clouds Minimum CostMaximum Flow Algorithm Small Instance (1; 0) (1; 0,33) (2; 0) (2; 0,23) (1; 0) (1; 0,14) (D1; 0) (D1; 0) Medium Instance (0; ∞) (0; 0) S T (D2; 0) (D2; 0) (2; 0) (2; 0,23) (1; 0) (1; 0,14)

  13. Smart Placement in Clouds Simulation Tests: Case of (0;1) RandomCosts RandomHostingCosts Scenario Weconsider (0; 1) Randomhostingcostsbetweeneach couple of vertices (a, b), where a is a fictif node, and b is a physical machine (server).

  14. Smart Placement in Clouds Simulations Tests: Case of Inverse HostingCosts: Inverse HostingCosts Scenario Weconsiderinversedhostingcostsfunctionbetweeneach couple of vertices (a, b), where a is a fictif node, and b is a physical machine: Whererepresents the availablecapacity on the considered arc. est une fonction non nulle.

  15. II- Live Migration of VMs

  16. Live Migration of VMs • Migration process: ESX Xen Hyper-V KVM OFF

  17. Live Migration of VMs PolyhedralApproachs Polytops, faces and facets Subject To constraints: facets face

  18. Live Migration of VMs PolyhedralApproachs SomeValidInequalities of ourProblem: • Decision Variables: if A VM k ismigratedfrom i to j (0 else). • Preventbackword migration of a VM: • Server’s destination uniqueness of a VM migration: • Servers’ power consumption limitation constraints: • Etc…

  19. Live Migration of VMs PolyhedralApproachs

  20. Live Migration of VMs PolyhedralApproachs Number of used servers whentakingintoaccount Migrations

  21. Convergence Time (in seconds) of Migration Algorithm:

  22. Live Migration of VMs PolyhedralApproachs Percentage of GainedEnergywhen Migration isUsed

  23. Thankyou

More Related