1 / 26

Now would be a good time to kill your cell phone, and disconnect from the internet.

Now would be a good time to kill your cell phone, and disconnect from the internet. For next time, print Heuristic Search.ppt slides. Due to the graphic nature of the following slides, user discretion is advised. Due to the graphic nature of the following slides, user discretion is advised.

Download Presentation

Now would be a good time to kill your cell phone, and disconnect from the internet.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Now would be a good time to kill your cell phone, and disconnect from the internet. For next time, print Heuristic Search.ppt slides

  2. Due to the graphic nature of the following slides, user discretion is advised.

  3. Due to the graphic nature of the following slides, user discretion is advised. All grads are considered guilty until proven innocent in a court of law.

  4. F F F F F F F F F F F F F F F F W W W W W W W W W W W W W W W W W W W W D D D D D D D D D D D D D D D D D D D D D C C C C C C C C C C C C C C C C C C C C F F F F F F F F F F F W W W W W W W D D D D D D C C C C C C C Last time we saw Search Tree for “Farmer, Wolf, Duck, Corn” Illegal State Repeated State Goal State

  5. A farm hand was sent to a nearby pond to fetch 8 gallons of water. He was given two pails - one 11, the other 6 gallons. How can he measure the requested amount of water? Sliding Tile Puzzle You can slide any of the numbered tiles into the blank space. Can you arrange the numbers into order? Last time we saw… Find a route from LAX to the Golden Gate bridge that minimizes the driving time, ...that minimizes the mileage, ...that minimizes the number of Taco Bells you must pass. Can you place 8 queens on a chessboard such that no piece is attacking another? Which tree shows the correct relationship between gorilla, chimp and man? When you have just 3 animals, there are only three possible trees...

  6. Problem Solving using Search • A Problem Space consists of • The current state of the world (initial state) • A description of the actions we can take to transform one state of the world into another (operators). • A description of the desired state of the world (goal state), this could be implicit or explicit. • A solution consists of the goal state*, or a path to the goal state. • * Problems were the path does not matter are known as “constraint satisfaction” problems.

  7. 1 2 3 4 5 6 2 1 3 7 8 4 7 6 5 8 Initial State Operators Goal State Slide blank square left. Slide blank square right. …. Move F Move F with W …. FWDC FWDC Distributive property Associative property ... 4 Queens Add a queen such that it does not attack other, previously placed queens. A 4 by 4 chessboard with 4 queens placed on it such that none are attacking each other

  8. Representing the states • A state space should describe • Everything that is needed to solve the problem. • Nothing that is not needed to solve the problem. • For the 8-puzzle • 3 by 3 array • 5, 6, 7 • 8, 4, BLANK • 3, 1, 2 • A vector of length nine • 5,6,7,8,4, BLANK,3,1,2 • A list of facts • Upper_left = 5 • Upper_middle = 6 • Upper_right = 7 • Middle_left = 8 • …. In general, many possible representations are possible, choosing a good representation will make solving the problem much easier. Choose the representation that make the operators easiest to implement.

  9. Operators I 2 1 3 4 7 6 5 8 • Single atomic actions that can transform one state into another. • You must specify an exhaustive list of operators, otherwise the problem may be unsolvable. • Operators consist of • Precondition: Description of any conditions that must be true before using the operator. • Instruction on how the operator changes the state. • In general, for any given state, not all operators are possible. • Examples: • In FWDC, the operator Move_Farmer_Left is not possible if the farmer is already on the left bank. • In this 8-puzzle, • The operator Move_6_down is possible • But the operator Move_7_down is not.

  10. Operators II 2 1 3 4 7 6 5 8 There are often many ways to specify the operators, some will be much easier to implement... Example: For the eight puzzle we could have... • Move 1 left • Move 1 right • Move 1 up • Move 1 down • Move 2 left • Move 2 right • Move 2 up • Move 2 down • Move 3 left • Move 3 right • Move 3 up • Move 3 down • Move 4 left • … • Move Blank left • Move Blank right • Move Blank up • Move Blank down Or

  11. A complete example: The Water Jug Problem A farm hand was sent to a nearby pond to fetch 2 gallons of water. He was given two pails - one 4, the other 3 gallons. How can he measure the requested amount of water? • Two jugs of capacity 4 and 3 units. • It is possible to empty a jug, fill a jug, transfer the content of a jug to the other jug until the former empties or the latter fills. • Task: Produce a jug with 2 units. Abstract away unimportant details • State representation (X , Y) • X is the content of the 4 unit jug. • Y is the content of the 3 unit jug. Define a state representation Define an initial state Initial State (0 , 0) Define an goal state(s) May be a description rather than explicit state Goal State (2 , n) Define all operators • Operators • Fill 3-jug from faucet (a, b)  (a, 3) • Fill 4-jug from faucet (a, b)  (4, b) • Fill 4-jug from 3-jug (a, b)  (a + b, 0) • ...

  12. Once we have defined the problem space (state representation, the initial state, the goal state and operators) are we are done? We start with the initial state and keep using the operators to expand the parent nodes till we find a goal state. …but the search space might be large… …really large… So we need some systematic way to search.

  13. The average number of new nodes we create when expanding a new node is the (effective) branching factor b. • The length of a path to a goal is the depth d. So visiting every the every node in the search tree to depth d will take O(bd) time. Not necessarily O(bd) space. A Generic Search Tree b b2 bd Fringe (Frontier) Set of nonterminal nodes without children I.e nodes waiting to be expanded.

  14. 2 1 3 4 7 6 5 8 Branching factors for some problems The eight puzzle has a branching factor of 2.13, so a search tree at depth 20 has about 3.7 million nodes. (note that there only 181,400 different states). Rubik’s cube has a branching factor of 13.34. There are 901,083,404,981,813,616 different states. The average depth of a solution is about 18. The best time for solving the cube in an official championship was 17.04 sec, achieved by Robert Pergl in the 1983 Czechoslovakian Championship. Chess has a branching factor of about 35, there are about 10120 states (there are about 1079 electrons in the universe).

  15. Detecting repeated states is hard….

  16. We are going to consider different techniques to search the problem space, we need to consider what criteria we will use to compare them. • Completeness: Is the technique guaranteed to find an answer (if there is one). • Optimality: Is the technique guaranteed to find the best answer (if there is more than one). (operators can have different costs) • Time Complexity: How long does it take to find a solution. • Space Complexity: How much memory does it take to find a solution.

  17. General (Generic) Search Algorithm function general-search(problem, QUEUEING-FUNCTION) nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE)) loop do if EMPTY(nodes) then return "failure" node = REMOVE-FRONT(nodes) if problem.GOAL-TEST(node.STATE) succeeds then return node nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, problem.OPERATORS)) end A nice fact about this search algorithm is that we can use a single algorithm to do many kinds of search. The only difference is in how the nodes are placed in the queue.

  18. Breadth First SearchEnqueue nodes in FIFO (first-in, first-out) order. Intuition: Expand all nodes at depth i before expanding nodes at depth i + 1 • Complete? Yes. • Optimal? Yes. • Time Complexity: O(bd) • Space Complexity: O(bd), note that every node in the fringe is kept in the queue.

  19. Uniform Cost SearchEnqueue nodes in order of cost 5 2 5 2 5 2 7 1 7 1 5 4 Intuition: Expand the cheapest node. Where the cost is the path cost g(n) • Complete? Yes. • Optimal? Yes, if path cost is nondecreasing function of depth • Time Complexity: O(bd) • Space Complexity: O(bd), note that every node in the fringe keep in the queue. Note that Breadth First search can be seen as a special case of Uniform Cost Search, where the path cost is just the depth.

  20. Depth First SearchEnqueue nodes in LIFO (last-in, first-out) order. Intuition: Expand node at the deepest level (breaking ties left to right) • Complete? No (Yes on finite trees, with no loops). • Optimal? No • Time Complexity: O(bm), where m is the maximum depth. • Space Complexity: O(bm), where m is the maximum depth.

  21. Depth-Limited SearchEnqueue nodes in LIFO (last-in, first-out) order. But limit depth to L L is 2 in this example Intuition: Expand node at the deepest level, but limit depth to L • Complete? Yes if there is a goal state at a depth less than L • Optimal? No • Time Complexity: O(bL), where L is the cutoff. • Space Complexity: O(bL), where L is the cutoff. Picking the right value for L is a difficult, Suppose we chose 7 for FWDC, we will fail to find a solution...

  22. Iterative Deepening Search IDo depth limited search starting a L = 0, keep incrementing L by 1. Intuition: Combine the Optimality and completeness of Breadth first search, with the low space complexity of Depth first search • Complete? Yes • Optimal? Yes • Time Complexity: O(bd), where d is the depth of the solution. • Space Complexity: O(bd), where d is the depth of the solution.

  23. Iterative Deepening Search II Iterative deepening looks wasteful because we reexplore parts of the search space many times... Consider a problem with a branching factor of 10 and a solution at depth 5... 1+10+100+1000+10,000+100,000 = 111,111 1 1+10 1+10+100 1+10+100+1000 1+10+100+1000+10,000 1+10+100+1000+10,000+100,000 = 123,456

  24. Bi-directional Search Intuition: Start searching from both the initial state and the goal state, meet in the middle. • Notes • Not always possible to search backwards • How do we know when the trees meet? • At least one search tree must be retained in memory. • Complete? Yes • Optimal? Yes • Time Complexity: O(bd/2), where d is the depth of the solution. • Space Complexity: O(bd/2), where d is the depth of the solution.

  25. M A D H K N O G B C E L F J I

More Related