480 likes | 959 Views
Seismic Wave Propagation. Elastic Materials. L. F. strain. D L. F = k * D L/L (Hooke’s Law) k = Young’s modulus. strain. Rand quartzite. Acoustic Waves. F = Mass*Acceleration (Newton rules!). F(x). F (x+dx). A. u+ du. x. u. x + dx.
E N D
Elastic Materials L F strain DL F = k *DL/L (Hooke’s Law) k = Young’s modulus strain Rand quartzite
Acoustic Waves F = Mass*Acceleration (Newton rules!) F(x) F (x+dx) A u+ du x u x + dx Net force = F(x+dx) – F(x) = DF = [r *A*dx] *acc DF/Dx = [r * acc * A] but F = k *Du/Dx (Hookes law) and S = F/A, so K * D(Du/Dx)Dx = r * Du2/Dt2 i.e. wave equation where V= (k/r)1/2
Seismic Wave Equation k * D(Du/Dx)Dx = r * Du2/Dt2 or d2u/dx2 = (r/k) du2/dt2 which has solutions of the form u = A e+ikt + Be-ikt
Seismic Waves P Body waves S Surface Waves Love “Ground Roll” Rayleigh
Material P wave Velocity (m/s) S wave Velocity (m/s) Air 332 Water 1400-1500 Petroleum 1300-1400 Steel 6100 3500 Concrete 3600 2000 Granite 5500-5900 2800-3000 Basalt 6400 3200 Sandstone 1400-4300 700-2800 Limestone 5900-6100 2800-3000 Sand (Unsaturated) 200-1000 80-400 Sand (Saturated) 800-2200 320-880 Clay 1000-2500 400-1000 Glacial Till (Saturated) 1500-2500 600-1000 Seismic Wave Speeds
Wave SimulationsColorado School of Mines Tutorial Body waves in half space
Snell’s Law*(acoustic) *Fermat’s Least Time Principle
Snell’s Law(elastic) sin f1 = sin f2 = sin f3 Vp1 Vp2 Vs3
Critical Refraction sin ic = sin (90º) V1 V2 sin ic = V1 V2
Seismic Refraction Waves passing from slow to fast medium
Snell’s Law Snell’s Law
400 Reflection & Refraction 200 Refracted T, msec Reflected Direct 0 Distance, km
Travel Time Curve(Shotpoint Gather Engineering Quad 1/27/00 12 gauge source 1m geophone spacing, 1 m minimum offset
Refraction: + Gradients V x z z t x
Refraction: - Gradients V x LVZ z z t x Low velocity zone
Reflection: Basic Geometry T2 = X2 + (2Z/V)2 V2 T2 = X2 + T02 V2
SHOT * Reflection display convention
Sample shot gathers split spread offend
Seismic Waves P Body waves S Surface Waves Love “Ground Roll” Rayleigh
x Ground Roll(Rayleigh Waves) t Dispersion Ewing, Jardetzky and Press (1957)