430 likes | 665 Views
LCLS. Accelerator Issues and Design Paul Emma, SLAC Dec. 12, 2003. Design of Compression and Acceleration Systems Technical Challenges Full System Simulations. For an FEL…. l u. l r. N l r 0.5 m m. ‘. ‘Slice’ versus ‘Projected’ Emittance. For a collider….
E N D
LCLS Accelerator Issues and DesignPaul Emma, SLACDec. 12, 2003 • Design of Compression and Acceleration Systems • Technical Challenges • Full System Simulations Paul Emma, SLAC
For an FEL… lu lr Nlr 0.5 mm ‘ ‘Slice’ versus ‘Projected’ Emittance For a collider… collision integrates over bunch length — ‘projected’ emittance is important e- slips back w.r.t. photons by lr (= 1.5 Å) per period …FEL integrates over slippage length: ‘slice’ emittance is important Paul Emma, SLAC
eN = 1.2 mm P 10 GW eN = 2.1 mm P 0.1 GW SASE X-ray FEL is very sensitive to electron ‘slice’ emittance lr = 1.5 Å courtesy S. Reiche Instead of mild luminosity loss, power nearly switches OFF. However, longer wavelength, such as 15 Å (4.5 GeV), is much easier (eN 6 mm). Paul Emma, SLAC
Nominal System Design 1.5-Å SASE FEL Linac: • Requirements • Acceleration to 14.1 GeV (~3 GeV min.) • Bunch compression to 3.4 kA • Emittance preservation (<20% ‘slice’ of 1-mm-mrad) • Final energy spread (0.01% ‘slice’, <0.1% ‘projected’) • Minimal sensitivity to system ‘jitter’ (charge, phase, voltage, ...) • Diagnostics integrated into optics • Flexible operations (1.5 Å →15 Å, low-charge, chirp, etc.) use 2 compressors, 3 linacs Paul Emma, SLAC
1 km Nominal System Design • Constraints • Use existing SLAC linac compatible with PEP-II operation • Undulator located beyond research yard Paul Emma, SLAC
LCLS versus SLC • LCLS Advantages • Shorter linac (1 km < 3 km) • Shorter bunch in linac (1 mm → 0.2 mm → 0.02 mm) • Lower charge (1 nC < 7 nC) • ‘Slice’ emittance important, not projected • No positrons, no sextupoles, no rolls, no DR’s, no RTL’s, no arcs • Round beams (no x-y coupling issues) • Disadvantages • Lower initial linac energy (135 MeV < 1.2 GeV) • Smaller emittance (1/1 mm < 4/40 mm) • Emittance more critical (>2 mm kills FEL power) • Tighter RF, charge, & timing jitter tol’s (~0.1 deg) • CSR is new issue • RF gun less stable platform than damping ring Paul Emma, SLAC
Design Strategy • Design longitudinal optics first • Set proper compression in two stages • Minimize final energy spread • Minimize Ipk and Efsensitivity to gun charge and timing jitter • Design transverse optics second • Minimize transverse wakefields, CSR, and chromatic effects • Build in emittance, energy spread, bunch-length diagnostics • Track entire system • Iterate design Paul Emma, SLAC
Nominal LCLS Linac Parameters for 1.5-Å FEL Single bunch, 1-nC charge, 1.2-mm slice emittance, 120-Hz repetition rate… 250 MeV z 0.19 mm 1.6 % 4.54 GeV z 0.022 mm 0.71 % 14.1 GeV z 0.022 mm 0.01 % 6 MeV z 0.83 mm 0.05 % 135 MeV z 0.83 mm 0.10 % Linac-X L =0.6 m rf= -160 rf gun Linac-1 L 9 m rf -25° Linac-2 L 330 m rf -41° Linac-3 L 550 m rf -10° new Linac-0 L =6 m undulator L =125 m 21-1b 21-1d 21-3b 24-6d 25-1a 30-8c X ...existing linac BC-1 L 6 m R56 -39 mm BC-2 L 22 m R56 -25 mm DL-1 L 12 m R56 0 LTU L =275 m R56 0 research yard SLAC linac tunnel (RF phase: frf= 0 at accelerating crest) Paul Emma, SLAC
RMS Bunch Length and Energy Spread sector-21 sector-25 sector-30 FFTB++ sd sz Paul Emma, SLAC
after L2 after DL1 after L1 after BC2 after X-RF after L3 after BC1 at und. time profile energy profile phase space sz = 830 mm sz = 190 mm sz = 830 mm sz = 23 mm sz = 830 mm sz = 23 mm FINAL sz = 190 mm sz = 23 mm Paul Emma, SLAC
X-band RF at decelerating phase corrects 2nd-order and allows unchanged z-distribution lx = ls/4 Slope linearized avoid! 1 -40° x = p 0.6-m section, 19 MV available at SLAC (200-mm alignment) X-band RF used to Linearize Compression (f = 11.424 GHz) S-band RF curvature and 2nd-order momentum compaction cause sharp peak current spike Paul Emma, SLAC
Transverse Wakefields and Component Misalignments Choose b-phase adv/cell for each linac to minimize emittance dilution: L2 phase adv/cell optimized L3 phase adv/cell optimized sz = 22 mm sz = 195 mm x also misaligned quads/BPMs generate dispersion De wakes on wakes off wakes on wakes off Paul Emma, SLAC
Transverse Optics from Cathode to e- Dump LCLS MAD Deck Cathode to e- Dump (2200 elements) Dyx,y 30º Dyx,y 75º Thanks to M. Woodley Paul Emma, SLAC
4.0 mm (BC1) 2.6 mm (BC2) RMS Transverse Beam Sizes from Cathode to e- Dump 1 mm 100 mm undulator 10 mm Paul Emma, SLAC
Alignment and Roll Tolerances (most > 1 mm, > 1 deg) Paul Emma, SLAC
Linac RF Section Modifications If modulators on 20-6, -7, and -8 used for injector, lose another 670 MeV (1.56 GeV total) Paul Emma, SLAC
Injector to Linac Interface courtesy L. Bentson “Linac” Responsibility Starts Here (21-1b) Paul Emma, SLAC
Linac-1 Through BC1 21-1b 21-1c 21-1d 21-3b Paul Emma, SLAC
BC2 Area 24-6d 25-1a Paul Emma, SLAC
3 cm contraction collimator BPM screen Moveable Chicanes (BC1 shown) BPM critical for energy feedback (20 mm resolution) offset: 17 to 30 cm (24 cm nominal) collimator BPM quadrupole screen Paul Emma, SLAC
80 mm 45 mm 12 mm x Field quality requirement too tight with fixed chicane... • Also needed: • BPM res. 20 mm • BPM linearity • profile monitor • collimator • requires: |b2/b0| < 0.002% @ r = 2 cm (moveable chicane requires 0.070%) SPPS dipoles: |b2/b0| < 0.010% @ 2 cm (just barely met) Paul Emma, SLAC
Future Multiple Undulators +4º +2º N S -2º Paul Emma, SLAC
Linac-To-Undulator (LTU) vertical bends energy centroid & spread meas. (310-5 & 10-4) + collimation • vertical bend 4.7 mrad • horizontal jog 1.25 m • energy diagnostics • emittance diagnostics • collimators • CSR cancellation • branch points for future undulators • spontaneous undulator possible 4 e-wires, 6 collimators Paul Emma, SLAC
Collimation for Undulator Protection 2.5 mm well shadowed in x, y, and E Paul Emma, SLAC
hy by Electron Dump x-rays→ quads soft bend e-→ permanent vert. bends powered vert. bends e-→ quad screen (sE/E = 10-5 5 mm) dump Paul Emma, SLAC
Specification Sheets on Every New Magnet • BX01 DL1 dipole: • z-location • field • current • trim info. • alignment tol.’s • length • max/min strength • etc... Paul Emma, SLAC
LCLS Technical Challenges • Coherent Synchrotron Radiation in Bends • projected emittance growth • micro-bunching instability (+ LSC — see Z. Huang talk) • Emittance Preservation in Linacs • transverse wakefields • misalignments & chromaticity • Machine Stability • gun and rf system jitter • energy and bunch length feedback Paul Emma, SLAC
Coherent Synchrotron Radiation coherent power N 6109 ~l-1/3 incoherent power vacuum chamber cutoff sz Paul Emma, SLAC
Coherent Synchrotron Radiation (CSR) • Powerful radiation generates energy spread in bends • Induced energy spread breaks achromatic system • Causes bend-plane emittance growth (short bunch is worse) coherent radiation forl > sz bend-plane emittance growth sz l L0 DE/E = 0 s Dx e– R DE/E < 0 overtaking length: L0 (24szR2)1/3 Dx = R16(s)DE/E Paul Emma, SLAC
Coherent Synchrotron Radiation (CSR) in SPPS Chicane ON Chicane OFF gex = 34.2 0.7 mm gex = 27.6 0.6 mm Paul Emma, SLAC
Coherent Synchrotron Radiation (CSR) in SPPS Bend-plane emittance is consistent with calculations and sets upper limit on CSR effect Paul Emma, SLAC
230 fsec Add slice energy spread to Landau damp instability. ‘Laser-Heater’ see Z. Huang talk energy spread damps bunching sd 310-5 S. Heifets, S. Krinsky, G. Stupakov, SLAC-PUB-9165, March 2002 CSR Micro-bunching* CSR amplifies small modulations on bunch current Successive bend-systems cause micro-bunching Growth of slice-energy spread & emittance. without heater sd 310-6 avoid! * First observed by M. Borland (ANL) in LCLS Elegant tracking Paul Emma, SLAC
Misalignments, Steering, and Emittance Correction trajectory after steering BPM, quad, and RF misalignments: (each at 300 mm rms)... then steered in Elegant gex 5 mm gey 2 mm Paul Emma, SLAC
Emittance Correction with Trajectory ‘Bumps’ 100 seeds steering coils De/e15% gex 1.02 mm gey 1.09 mm Thanks to M. Borland (ANL/APS) Paul Emma, SLAC
X- X-band Jitter Budget (<1 minute time-scale) measured RF performance klystron phase rms 0.07° (20 sec) klystron ampl. rms 0.06% (60 sec) Paul Emma, SLAC
LCLS Start-to-End Tracking Simulations • Track entire machine to evaluate beam brightness & FEL • Track machine many times with jitter to test stability budget (M. Borland, ANL) Parmela Elegant Genesis space-charge compression, wakes, CSR, … SASE FEL with wakes Paul Emma, SLAC
mismatch amplitude variation slice 4D centroid osc. amplitude Sliced e- Beam to Evaluate FEL (Dz 0.7 mm) After full system tracking (also studied by S. Reiche) gex gey zx zy Lg < 4 m Paul Emma, SLAC
Ipk Lg gex Pout Machine Stability Simulations • Track LCLS 230 times with Parmela Elegant Genesis • Include wakes, CSR, etc. + jitter budget (M. Borland, ANL) Paul Emma, SLAC
3 prof. mon.’s (Dyx,y = 60°) rf gun gex,y gex,y gex,y gex,y L0 gex,y L1 L2 L3 X ...existing linac Emittance and Energy Spread Diagnostics* • 5 energy spread meas. stations (optimized for small bx) • 5 emittance meas. stations designed into optics (Dyx,y) • slice measurements possible with transverse RF (L0 & L3) sE sE sE sE sE * see also P. Krejcik talk Paul Emma, SLAC
long. phase space 230 fsec V0 = 0 LCLS simulation RF ‘streak’ V(t) sx e- S-band Built & used at SLAC in 1960’s sz y = kt [mm] V0 = 20 MV * see P. Krejcik talk x = hDE/E [mm] meas. bunch length & slice emittance meas. longitudinal phase space Transverse RF deflector as diagnostic* Paul Emma, SLAC
LCLS Summary • Linac design optimized for nominal 1.5-Å operation • Design is flexible to accommodate 15-Å, low-charge, & chirp • CSR growth of projected emittance – not slice • Much experience on SLAC linac with wakefield control • Beam diagnostics built into design • Full system tracking to… • Evaluate e- brightness preservation, • Calculate SASE gain, • Simulate pulse-to-pulse stability. Full tracking with errors shows FEL saturation at 1.5 Å, but a very challenging machine! Paul Emma, SLAC