20 likes | 93 Views
Universität Bielefeld SFB 613. D11. Untersuchung des Anionentransports durch Halorhodopsin mittels zeitaufgelöster Proteinkristallographie. Hartmut Niemann 1 , und Joachim Heberle 2 1 Strukturbiochemie (BC-IV), Fakultät für Chemie 2 Biophysikalische Chemie (PC-III), Fakultät für Chemie.
E N D
Universität Bielefeld SFB 613 D11 Untersuchung des Anionentransports durch Halorhodopsin mittels zeitaufgelöster Proteinkristallographie Hartmut Niemann1, und Joachim Heberle2 1 Strukturbiochemie (BC-IV), Fakultät für Chemie 2 Biophysikalische Chemie (PC-III), Fakultät für Chemie Ziel Das integrale Membranprotein Halorhodopsin ist eine lichtgetriebene Anionenpumpe, die Cl- ins Zellinnere von Halobakterien transportiert. In allen bisher bekannten Röntgenstrukturen befindet sich das Anion aber noch auf der extrazellulären Seite. Um den Reaktionsmechanimus zu verstehen, wollen wir spätere Reaktionsintermediate, bei denen sich das Anion bereits auf der cytoplasmatischen Seite befindet, stabilisieren und ihre Struktur aufklären. Da Halorhodopsin die kristallographisch gut nachweisbaren Ionen Br- und I- transportiert, eignet es sich hervorragend für die Untersuchung niedrig besetzter Zwischenzustände bzw. für zeitaufgelöste Studien. Damit besteht erstmals die Möglichkeit, den aktiven Ionentransport durch ein Membranprotein zeitlich und räumlich hochauflösend zu verfolgen. Arbeitsplan • Expression und Reinigung von Halorhodopsin • Kristallisation in der kubischen Lipidphase • Mikrospektroskopie an Kristallen • Stabilisierung von Intermediaten im Kristall • Statische Kristallographie an stabilisierten Zwischenzuständen • Zeitaufgelöste Kristallographie (Laue) Stand der Forschung Während eines Photozyklus wird ein Cl- Ion über die Membran gepumpt. Ein Modell für den Photozyklus ist etabliert (Abb.1). Die Strukturen der Zustände HR und L1 sind bekannt. In L1 liegt 13-cis Retinal vor, allerdings hat sich das Cl- nicht (signifikant) bewegt (Abb. 2). Beantragte Mittel • 2 Doktorandenstellen • Investition: Chromatographie-Anlage 45.000 € Vernetzung im SFB • A2 (Schmid): Simulationen von Membranen • A5 (Seidel, Sauer, Dietz): Membranproteine • D4 (Heinzmann, Pfeiffer, Mattay): Ultraschnelle Laserspektroskopie • K2 (Sewald, Anselmetti): AFM, SPR • K8 (Heberle, Sauer): Membranproteine Abb. 2: Kristallstruktur von Halorhodopsin. T203V Mutante im Grundzustand (grau) und im L1 Zustand (farbig). An der Cl- Bindung beteiligte Seitenketten und Cl- sind als Stäbchen und Kugeln gezeigt [1]. Abb. 1: Photozyklus von Halorhodopsin Vorhaben • Strukturbestimmung später Intermediate des Photozyklus • Charakterisierung der durch FT-IR vorhergesagten Strukturänderungen des Proteinrückgrats • Lokalisation des gepumpten Anions auf der cytoplasmatischen Seite • Beschreibung der zweiten Bindungstasche und der molekularen Erkennung • Zuverlässige Lokalisation bei niedrig besetzten Zwischenzuständen dank der hohen Ordnungszahl von I- und des anomalen Signals von Br- • Kombination von Spektroskopie (UV/Vis und FT-IR) und Kristallographie • Thermisches Einfangen von Zwischenzuständen (v.a. L2) und Strukturbestimmung mittels statischer Kristallographie • Etablierung von geeigneten Bedingungen für zeitaufgelöste Kristallographie • Laue-Kristallographie für hohe zeitliche Auflösung (hohe Ordnungszahl der gepumpten Ionen wiederum von Vorteil) Schlussfolgerung Da Halorhodopsin auch die elektronenreichen Ionen Br- und I- transportiert, ist es ein ideales System, um das Anion während des Transports mittels Röntgenkristallographiezu verfolgen bzw. in niedrig besetzten Zuständen zu lokalisieren. Mikrospektroskopie ist zur Charakterisierung ein-gefangener Intermediate (Cryo-Trapping) und der Reaktionskinetik (zeitaufgelöste Laue-diffraktion) notwendig, womit eine eindeutige Korrelation der Strukturänderungen zu den spektroskopisch beo-bachteten Reaktionsintermediaten ermöglicht wird. Publikationen [1] W. Gmelin, K. Zeth, R. Efremov, J. Heberle, J. Tittor, and D. Oesterhelt (2007), The crystal structure of the L1 intermediate of halorhodopsin at 1.9 Å resolution. Photochem. Photobiol. 83, 369-77. [2] J. Heberle, G. Büldt, E. Koglin, J.P. Rosenbusch, and E.M. Landau (1998), Assessing the Functionality of a Membrane Protein in a Three-Dimensional Crystal. J. Mol. Biol. 281, 587-592.
Universität Bielefeld SFB 613 D11 Zusatzinformation Appendix A: Spektroskopie und Mikrospektroskopie Zeitaufgelöste UV/Vis- und FT-IR-Spektroskopie an HR Mit zeitaufgelöster UV/Vis- wird die Kinetik der Zwischenzustände bestimmt, während mit der Schwingungsspektroskopie (FT-IR-Differenz- und Resonanz-Raman) strukturelle Details von Reaktionsintermediaten nachgewiesen werden. Mikrospektroskopie an HR-Kristallen Bestimmung von Reaktionsintermediat und Besetzungsgrad im Kristall als Grundlage für die Kristallographie. Das Mikroskop ist mit einem UV/Vis- und einem FT-IR-Spektrometer verbunden (Abb. 5). Beide können auch zeitauflösend betrieben werden [4]. Abb. 5: Schematischer Aufbau des Mikrospektrometers zur Messung der Kristalle (links) und ein Kristall von Bacteriorhodopsin (rechts) [4]. Abb. 3: Zeitaufgelöste UV/Vis-Spektroskopie an HR ohne Chlorid (links) und in 5 M NaCl (rechts). Blaue Bereiche kodieren für negative Absorptionsänderungen und rote für positive. FT-IR-Differenzspektren am HR-Mikrokristall zeigen, dass er eingefangene und röntgenkristallographisch charaktersierte L-Zustand dem des L1-Zustand entspricht. Abb. 6: IR-Differenzspektren, die aus zeitaufgelösten Daten (Abb.4) extrahiert wurden (schwarz und rot), und deren Vergleich mit dem Differenzspektrum eines Kristalls erlauben die Zuordnung des Kristalls zum L1-Zustand [1]. Abb. 4: Zeitaufgelöste step-scan-FT-IR-Differenzspektroskopie an HR (in 5 M NaCl). Appendix B: Expression, Kristallisation und Kristallographie Expression und Reinigung • Überexpression in H. salinarum (homolog) bzw. E. coli (heterolog) • Reinigung der Purpurmembran über Zentrifugation • Abtrennung von Verunreinigungen (Cytochrom, Abb.7 links) mit Chromatographie (HPLC) • Ni-NTA Affinitätschromatographie • hydrophobe Interaktion Kristallisation • Kristallisation in der kubischen Lipidphase • Gute Erfahrungen mit Bacterio- und Sensory Rhodopsin liegen vor • Bedingungen für Halorhodopsin etabliert Strukturbestimmung • Die Struktur des Grundzustands und des L1-Zustands (T203V-Mutante) wurden in der Gruppe von D. Oesterhelt bereits mir hoher Auflösung bestimmt. • Die AG Niemann verfügt über umfangreiche Erfahrung in statischer Kristallographie [6]-[8] • Strukturbestimmung eingefangener Intermediate erfolgt wie für andere Strukturen auch • Laue-Diffraktion an Halorhodopsin, um Protein-kristallographie zeitaufgelöst zu betreiben (in Zusammenarbeit mit K. Moffat, Univ. of Chicago) Abb. 7: UV/Vis-Spektroskopie an Halorhodopsin Links: Absorptionsspektrum nach Reinigung über Ultrazentrifugation. Rechts: Differenzspektren bei steigender Chlorid-Konzentration. Abb. 8: Kubische Lipidphase Links: Schematische Darstellung der bikontinuierlichen kubischen Lipidphase. Rechts: Kristallisationsansatz von Bacteriorhodopsin; aus [5]. [4] R. Efremov, V.I. Gordeliy, J. Heberle, and G. Büldt (2006), Time resolved microspectrometry on a single crystal of bacteriorhodopsin reveals lattice induced differences in the photocycle kinetics. Biophys. J. 91, 5422-5429. [5] Gordeliy, V.I., Schlesinger, R., Efremov, R., Büldt, G., and Heberle, J. (2003),Crystallization in lipidic cubic phases: A case study with Bacteriorhodopsin in: Methods in Molecular Biology228: Membrane Protein Protocols: Expression, Purification, and Crystallization (Ed. B. Selinsky), Humana Press, Totowa,NJ, 305-316. [6] H.H. Niemann et al (2007). Cell 130, 235-246. [7] C.R. Büttner, I. Sorg, G.R. Cornelis, D.W. Heinz, and H.H. Niemann (2008), J. Mol. Biol. 377, 489-500. [8] C.R. Büttner, G.R. Cornelis, D.W. Heinz, and H.H. Niemann (2005), Protein Sci. 14, 1993-2002.