960 likes | 1.06k Views
Dynamic Geometric Computation of Interacting Models*. Richard Riesenfeld University of Utah May 2008. * In collaboration with Xianming Chen ¹ , E Cohen ¹, J Damon ² _______________________________ 1. University of Utah 2. University of North Carolina.
E N D
Dynamic Geometric Computation of Interacting Models* Richard Riesenfeld University of Utah May 2008 • * In collaboration with • Xianming Chen¹, E Cohen¹, J Damon² • _______________________________ • 1. University of Utah • 2. University of North Carolina Dagstuhl
Today: Intersection of Two Deforming Parametric Surfaces Dagstuhl
Interactions are Complex Dagstuhl
Interactions are Complex Dagstuhl
Interactions are Complex Dagstuhl
Classification Computation Overall Process Detection Evolution Identification Dagstuhl
Two Main Ideas • Construct evolution vector field to follow the gradual change of intersection curve IC • Use Singularity Theory and Shape Operator to compute topological change of IC • Formulate locus of IC as 2-manifold in parametric 5-space • Compute quadric approx at critical points of height function Dagstuhl
Exchange Event Dagstuhl
Deformation as Generalized Offset Dagstuhl
Curve /Curve IPUnder Deformation Dagstuhl
Tangent Movement Dagstuhl
Evolution Vector Field Dagstuhl
Evolution Algorithm Dagstuhl
Surface Case Dagstuhl
Local Basis Dagstuhl
Evolution Vector Field Dagstuhl
Evolution Vector Field in Larger Context • Well-defined actually in a neighborhood of any P in ³, where two surfaces deform to P at t1and t2 • Vector field is on the tangent planes of level set surfaces defined by f=t1 - t2 • Locus of ICs is one of such level surfaces. Dagstuhl
Topological Change of ICs Dagstuhl
2-Manifold in Parametric 5-space Dagstuhl
IC as Height Contour Dagstuhl
Critical Points of Height Function Dagstuhl
4 Generic Transition Events Dagstuhl
Comment Morse theory of height function in augmented parametric space R5{ s1 , s2, ŝ1, ŝ2 , t} Singularity theory of stable surface mapping in physical space R3{x,y, z} Dagstuhl
Tangent Vector Fields Dagstuhl
Computing Tangent Vector Fields Dagstuhl
Computing Transition Events Dagstuhl
Future Directions • Application uses • Real models • More complex interactions • More general situations • Better understanding of singularities Dagstuhl
Conclusion • A general mathematical framework for dynamic geometric computation with B-splines • Evolve to neighboring solution by following tangent • Identify transition points by solving a rational system • Compute transition events by computing 2ndfundamental form on manifold Dagstuhl
Conclusion General mathematical framework for dynamic geometric computation with B-splines • Encode all solutions as a manifold in product space of curves/surfaces parametric space and deformation control space • Construct families of tangent vectors on the manifold Dagstuhl
References Theoretically Based Algorithms for Robustly Tracking Intersection Curves of Deforming Surfaces, Xianming Chen, R.F. Riesenfeld, Elaine Cohen, James N. Damon, CAD,Vol 39, No 5, May 2007,389-397 Dagstuhl
vielen Dank für die Einladung Dagstuhl
und auf Wiedersehen Dagstuhl
Conclusion • Solve dynamic intersection curves of 2 deforming B-splinesurfaces • Deformation represented as generalized offset surfaces • Implemented in B-splines, exploiting its symboliccomputation and subdivision-based 0-dimensional root finding. • Evolve ICs by following evolution vector field • Create, annihilate, merge or split IC by 2nd order shape computation at critical points of a 2-manifold in a parametric 5-space. Dagstuhl
Outline • Essential issues • General mathematical frame • Point-curve distance tracking • Surface-surface intersection tracking • Efficient NURBS symbolic computation Dagstuhl
Evolution • Identification • Detection • Classification • Computation Dagstuhl
Outline • Essential issues • General mathematical frame • Point-curve distance tracking • Surface-surface intersection tracking • Efficient NURBS symbolic computation Dagstuhl
Singularities of Differential Map • f :Rm→RnJacobian matrix singular • f :Rm→R f1 = f2 = … = fm = 0 • Hessian matrix H =( fij), nonsingular • Critical points classified by Morse index of H Dagstuhl
General Mathematical Frame -1 • Construct a manifold in the solution space Dagstuhl
General Mathematical Frame -2 • Construct dfamilies of tangent vector fields • Define projection map from the manifold to control space Dagstuhl
General Mathematical Frame -1 Construct a manifold in the solution space Dagstuhl
General Mathematical Frame -3 • Singularities of projection map • critical set in the solution space • transition set in the control space Dagstuhl
General Mathematical Frame -3 • Identify singularities • subdivision-based constraint solver • Robust guarantee for 0-dimensional solution • NURBS algebraic operation • Just for point-curve distance tracking • Robustness guarantee even though 1-dimensional Dagstuhl
General Mathematical Frame -4 • Evolution when away from transition set • d = 0 is simple • d > 0 needs extra effort • Heuristics from front propagation • Extra d constraints Dagstuhl
General Mathematical Frame -5 Transition when crossing transition set Restrict the projection to perturbation line Morse function Local 2nd order differential computation to catch global topology change Dagstuhl 45
General Mathematical Frame -5 • Transition when crossing transition set • Restrict the projection to perturbation line • Morse function • Local 2nd order differential computation to catch global topology change Dagstuhl
Outline • Essential issues • General mathematical frame • Point-curve distance tracking • Surface-surface intersection tracking • Efficient NURBS symbolic computation Dagstuhl
Critical Distance (CD) extremal and perpendicular extremal and perpendicular extremal and perpendicular Dagstuhl
Type Discriminant D Dagstuhl
Distance Tracking Problem • Given critical distances of P to the curve • If P is perturb on the plane by • Create any new CDs if any • Annihilate any old CDs if any • Evolve the rest of CDs • Distance tracking without global searching Dagstuhl