530 likes | 753 Views
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases. G. Cazzoli, C. Puzzarini Dipartimento di Chimica “G. Ciamician”, Università di Bologna G. Buffa IPCF-CNR and Dipartimento di Fisica "E. Fermi", Pisa.
E N D
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento di Chimica “G. Ciamician”, Università di Bologna G. Buffa IPCF-CNR and Dipartimento di Fisica "E. Fermi", Pisa 10th International HITRAN Conference — 22-24 June, 2008
1) Experimental details: The THz spectrometer 1) Experimental set-up: The THz spectrometer 2) Theoretical calculations: The semiclassical approach 2) Theoretical calculations: The semiclassical approach 3) Experiment & Theory: Results 3) Experiment & Theory: Results OUTLINES
1) Experimental details: The THz spectrometer - set up - techniques - procedure 1) Experimental details: The THz spectrometer - set up - techniques - procedure
FREQUENCY RANGE covered @ LMSB (1) 8-120 GHz (wave-guide Stark cell – P band) (2) 50-600 GHz (from fundamental to the 6th harmonic) + 600-800 GHz (8th harmonic) (3)1.0-1.2 THz (9th harmonic) + 1.33-1.6 THz (12th harmonic) (3) 1.0-1.2 THz (9th harmonic) + 1.33-1.6 THz (12th harmonic)
CHOPPER GUNN DIODES MULTIPLIER Ge DETECTOR CELL fG PREAMPL GUNN P. SUPPLY and SYNCR ref: 73 MHz MIX MULT ref HP8642A SYNTH 73 MHz |fG - mfRF | 300 Hz LOCK-IN AMPLIFIER RF OSCILL 3.7- 7.6 GHz fRF FUNCTION GENERATOR corr SYNCR ref: 20 MHz 20 MHz MIX |fRF - nfS| 10 MHz freq. standard nfS SYNTH 10 kHz-1 GHz MULT fS BLOCK DIAGRAM of the 1.0-1-6 THz SPECTROMETER 2x frequency modualtion FREQUENCY MODULATION TECHNIQUE
CHOPPER GUNN DIODES MULTIPLIER Ge DETECTOR CELL fG PREAMPL GUNN P. SUPPLY and SYNCR ref: 73 MHz MIX MULT ref HP8642A SYNTH 73 MHz |fG - mfRF | 300 Hz LOCK-IN AMPLIFIER RF OSCILL 3.7- 7.6 GHz fRF FUNCTION GENERATOR corr SYNCR ref: 20 MHz 20 MHz MIX |fRF - nfS| 10 MHz freq. standard nfS SYNTH 10 kHz-1 GHz MULT fS BLOCK DIAGRAM of the 1.0-1-6 THz SPECTROMETER chopper frequency revolution AMPLITUDE MODULATION TECHNIQUE
(3) EXPERIMENTAL SET-UP in the THz REGION The 1.0-1.6 THz SPECTROMETER Bolometer Chopper Quartz cell (1cm long) THz scource (gunn + multiplier)
(3) EXPERIMENTAL SET-UP in the THz REGION The 1.0-1.2 THz SPECTROMETER THz scource Cell
1) Experimental details: The THz spectrometer - set up - techniques - procedure 1) Experimental details: The THz spectrometer - set up - techniques - procedure
AMPLITUDE MODULATION TECHNIQUE Natural line profile Lambert-Beer law I = I0 exp[(-0)L]
LINE SHAPE ANALYSIS To retrieve COLLISIONAL HALF-WIDTH L: by fitting the observed line profiles – natural line profiles - directly to the chosen line profile model (Voigt profile, Galatry profile, Speed Dependent Voigt profile, … …) Residuals: Obs. – Calc.
a2 () = 2/K(x,y,z) cos 2 d 0 SOURCE MODULATION TECHNIQUE FREQUENCY MODULATION (sine wave): (t) = ( - 0) + cos mt =modulation depth m=modulation frequency Validity: Absorption 6% I = I0 [1- (-0)L] Line profile expanded in a cosine Fourier series. 2nd harmonic detection: K(x, y, z) = Voigt, Galatry or SP-Voigt or … function
LINE SHAPE ANALYSIS COLLISIONAL HALF-WIDTH L: by fitting the observed line profiles to a model that explicitly accounts for frequency modulation [Cazzoli & Dore JMS141, 49 (1990); Dore JMS221, 93 (2003)]. Residuals: Obs. – Calc.
1) Experimental details: The THz spectrometer - set up - techniques - procedure 1) Experimental details: The THz spectrometer - set up - techniques - procedure
LINE SHAPE ANALYSIS:Which line profile model? LINE SHAPE ANALYSIS:Which line profile model? Galatry profile Voigt profile The 301.8 GHz line of O3 broadened by N2
LINE SHAPE ANALYSIS:Which line profile model? LINE SHAPE ANALYSIS:Which line profile model? Galatry vs Speed-dependent Voigt profile
RETRIEVAL PARAMETERS PRESSURE BROADENING COEFFICIENT : by a weightedlinear fit of L against P L =0 + perturb Pperturb Lorentzian halfwidth perturb Broadening due to absorber 0
RETRIEVAL PARAMETERS PRESSURE SHIFT COEFFICIENT s: by a weightedlinear fit of against P =0 + sperturb Pperturb Transition frequency s Frequency at Ppertub = 0 0
2) Theoretical calculations: The semiclassical approach 2) Theoretical calculations: The semiclassical approach
THEORETICAL DETAILS COLLISIONAL RELAXATION described within the IMPACT APPROXIMATION by the EFFICIENCY FUNCTION P. For a line ifP = 1 - < i | S | i ><f | St | f > S = scattering matrix, H0 = Hamiltonian of internal degrees, V = collisional interaction, O = time ordering operator. SEMICLASSICAL APPROXIMATION (impact parameter b, relative velocity v, internal state of perturber r): P = P(b,v,r). The linewidth and lineshift s: real and imaginary parts of P: r = population of level r, f(v) = Maxwellian velocity distribution, n = perturber density.
3) Experiment & Theory: Results - H2O: which lines - theo & exp results: detailed comparison 3) Experiment & Theory: Results - H2O: which lines - theo & exp results: detailed comparison
H2O: THz pure rotational lines investigated J = 31,2 - 30,3* (1.097 THz) J = 11,1 - 00,0 (1.113 THz) J = 72,5 - 81,8 (1.147 THz) J = 31,2 - 22,1* (1.153 THz) J = 63,4 - 54,1* (1.158 THz) J = 32,1 - 31,2* (1.163 THz) J = 85,4 - 76,1 (1.168 THz) J = 74,4 - 65,1 (1.173 THz) J = 85,3 - 76,2 (1.191 THz) J = 63,3 - 54,2 (1.542 THz) Self-broad: amplitude modulation Self-broad: amplitude modulation N2- & O2-broad frequency modulation N2- & O2-broad frequency modulation Cazzoli et al. JQSRT 2008 Cazzoli et al. JQSRT submitted *Cazzoli et al. JQSRT in preparation
H2O: THz pure rotational lines investigated J = 31,2 - 30,3* (1.097 THz) J = 11,1 - 00,0 (1.113 THz) J = 72,5 - 81,8 (1.147 THz) J = 31,2 - 22,1* (1.153 THz) J = 63,4 - 54,1* (1.158 THz) J = 32,1 - 31,2* (1.163 THz) J = 85,4 - 76,1 (1.168 THz) J = 74,4 - 65,1 (1.173 THz) J = 85,3 - 76,2 (1.191 THz) J = 63,3 - 54,2 (1.542 THz) What was available for these lines? • - experimental values for 11,1 - 00,0 (N2& O2 ) • calculated and/or extrapolated data for others • - experimental values for 11,1 - 00,0 (N2& O2 ) • calculated and/or extrapolated data for others
3) Experiment & Theory: Results - H2O: which lines - theo & exp results: previous exp data 3) Experiment & Theory: Results - H2O: which lines - theo & exp results: previous exp data
J = 11,1 – 00,0 transition of H2O T = 297 K Cazzoli et al. JQSRT 2008
J = 11,1 – 00,0 transition of H2O T = 297 K Cazzoli et al. JQSRT 2008
J = 11,1 – 00,0 transition of H2O T = 297 K Cazzoli et al. JQSRT 2008
Self N2 O2 Air 297 K Exp Theo Exp Theo Exp Theo Exp Theo This work 19.72(46) 19.8 4.38(15) 4.2 2.40(12) 2.5 3.96(13) 3.8 Gasster et al. 3.67(10) 2.99(37) 3.53(8) HITRAN 4.74 3.53(8) J = 11,1 – 00,0 transition of H2O Improvements wrt old measurements
3) Experiment & Theory: Results - H2O: which lines - theo & exp results: HITRAN self broad 3) Experiment & Theory: Results - H2O: which lines - theo & exp results: HITRAN self broad
SELF-broadening Exp Theo This work J = 31,2 - 30,3 21.98(22) 21.54 HITRAN 18.40 This work J = 11,1 - 00,0 19.72(46) 19.8 HITRAN 4.74 This work J = 72,5 - 81,8 17.96(34) 17.93 HITRAN 12.93 This work J = 31,2 - 22,1 19.57(18) 21.22 HITRAN 18.33 This work J = 63,4 - 54,1 14.97(8) 16.27 HITRAN 16.94 This work J = 32,1 - 31,2 19.23(11) 19.80 HITRAN 18.40 This work J = 85,4 - 76,1 11.12(26) 11.33 HITRAN 15.16 This work J = 74,4 - 65,1 11.98(27) 13.03 HITRAN 16.69 This work J = 85,3 - 76,2 11.66(8) 11.88 HITRAN 15.16 This work J = 63,3 - 54,2 17.56 HITRAN 16.94 What’s the problem?
COMPARISON: semiclassical calc. (SC) vs HITRAN (assumption*) values *dependence of the broadening parameter on J”
COMPARISON: semiclassical calculations (SC) vs HITRAN (exp*) values *IR lines: 600-1000 cm-1 (R. A. Toth)
COMPARISON: semiclassical calculations (SC) vs EXP* values *Markov 1994, Cazzoli et al. 2007, Cazzoli et al. 2008
HITRAN ref. # lines Mean %error #lines with %err > 25% 3 98 8.3 10 13 6 43.3 4 15 15 37.3 8 23 1 3.7 0 30 3 6.8 0 Ref. 51: Averaged values as a function of J” 31 2 39.6 2 36 1 24.7 0 50 43 14.7 7 51 1333 37.5 595 52 1 76.6 1 53 3 24.1 1 Suggestion: Make use of calculated values when no reliable experimental data are available
3) Experiment & Theory: Results - H2O: which lines - theo & exp results: N2, O2 & air broad 3) Experiment & Theory: Results - H2O: which lines - theo & exp results: N2, O2 & air broad
Exp Theo AIR-broadening This work J = 31,2 - 30,3 3.970(82) 4.00 HITRAN 4.13 This work J = 11,1 - 00,0 3.96(13) 3.8 HITRAN 3.53(8) This work J = 72,5 - 81,8 3.508(20) 3.13 HITRAN 3.24 This work J = 31,2 - 22,1 3.935(75) 3.77 HITRAN 3.65 This work J = 63,4 - 54,1 2.911(60) 2.80 HITRAN 2.99 This work J = 32,1 - 31,2 3.857(57) 3.77 HITRAN 3.93 This work J = 85,4 - 76,1 2.287(66) 2.07 HITRAN 2.18 This work J = 74,4 - 65,1 2.765(34) 2.42 HITRAN 2.59 This work J = 85,3 - 76,2 2.462(24) 2.18 HITRAN 2.27 This work J = 63,3 - 54,2 3.805(72) 3.28 HITRAN 3.32 Good agreement!
3) Experiment & Theory: Results - H2O: which lines - theo & exp results: shift & SD param 3) Experiment & Theory: Results - H2O: which lines - theo & exp results: shift & SD param
Conclusions 10 pure rotational THz water lines have been experimentally and theoretically investigated • Rather accurate experimental results have been obtained • Good agreement between experiment and SC calculations • Update for HITRAN self broadening parameters is suggested