1 / 15

Examples of genuinely relativistic phenomena

ICOMP VIII, Monterey, CA October 1999. Examples of genuinely relativistic phenomena. R. Grobe. Intense Laser Physics Theory Unit Illinois State University. Undergraduate students. Postdocs. Faculty. J.W. Braun B.A. Smetanko

tassos
Download Presentation

Examples of genuinely relativistic phenomena

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ICOMP VIII, Monterey, CA October 1999 Examples of genuinely relativistic phenomena R. Grobe Intense Laser Physics Theory Unit Illinois State University Undergraduatestudents Postdocs Faculty J.W. Braun B.A. Smetanko J.J. Csesznegi P.J. Peverly R.E. Wagner T. Shepherd S.M. Mandel A. Bergquist H. Wanare P. Krekora G.H. Rutherford Q. Su R. Grobe Support : National Science Foundation, Research Corporation, Illinois State www . phy . ilstu . edu / ILP

  2. Tools to explore phenomena that are genuinely relativistic Dirac : Liouville:

  3. A flavor of the numerical work • Discretize: r  2563 points t 103-106 points  ≈ 4 · 2563 · 106 = 1013 complex numbers • Split operator FFT technique • Supercomputer

  4. Genuinely Relativistic Phenomena • Zitterbewegung J.W. Braun, Q. Su & RG, PRA59, 604 (1999) • Klein-Paradox (particle pair production) J.W. Braun, Q. Su & RG, PRA 59, 604 (1999) • Subnatural wave packet spreading Q. Su, B.A. Smetanko & RG, Opt. Exp. 2, 277 (1998) J.C. Csesznegi, G.H. Rutherford, Q. Su & RG, Las. Phys. 9, 41 (1999) • Spin-spatial coupling in magnetic fields G.H. Rutherford & RG, PRL 81, 4772 (1998) G.H. Rutherford & RG, JPA 31, 9331 (1998) • Chaos J. Kim, and H. Lee, PRE 51, 1579 (1995) • How good is Liouville? R.E. Wagner, P.J. Peverly, Q. Su & RG, PRA (subm.) • Counterintuitive enhancement of resonances R.E. Wagner, Q. Su & RG, PRL (subm.) • Cycloatoms and dephasing P.J. Peverly, R.E. Wagner, Q. Su, & RG, Las. Phys.(in press) • Scattered light spectra R.E. Wagner, Q. Su & RG, PRA 60, No.4 (1999)

  5. Schrödinger’s Zitterbewegung small ∆x  neg. energy contrib.  “Zitter” J.W. Braun, Q. Su & RG, PRA59, 604 (1999). position spin Zitterbewegung real? controversial issue...

  6. Time - resolved Klein Paradox J.W. Braun, Q. Su & RG, PRA59, 604 (1999). voltage > Ekin + 2c2 Interpretation still controversial ...

  7. Stern-Gerlach separation possible for electrons ??? Sz Sz Sz Pauli/Bohr: Lorentz-force “washes out” separation ?? inhomog. magnetic field: Position Dirac solution : Spin separation is possible G.H. Rutherford & RG, PRL 81, 4772 (1998) and JPA 31, 9331(1998).

  8. Subnatural wave packet spreading Non-relativistic: Spreading independent of the center of mass motion • Spreading is suppressed: Q. Su, B.A Smetanko and RG, Opt. Exp. 2, 277 (1998) • Spatial profile becomes asymmetrical : Q. Su, B.A. Smetanko & RG, Las. Phys. 4, 93 (1998)

  9. Relativity Induces Chaos J. Kim and H. Lee, PRE 51, 1579 (1995): + relativity => chaos non-relativistic => Liouville = Schrödinger relativistic => ??? Liouville ≈ Dirac ???? Schrödinger= Newton Dirac ≈ Liouville R.E. Wagner, P.J. Peverly, Q. Su & RG, PRA (subm.) What a surprise ...

  10. Maximum speed v/c for each W non- relativistic relativistic W wL Relativity enhances resonances Myth: relativity  “heavier mass”  slower motion Fact: relativity  faster motion example: electron in laser and static magnetic field  R. Wagner, Q. Su & RG, PRL (submitted)

  11. Novel steady spatial states: Cycloatoms Non-relativistic Relativistic 0 75 150 y 500 x Orbits stay in phase Orbits dephase relativistically Time (in 2p/wL)

  12. Relativistic dephasing model 0 75 150 500 Time replace W W + DW (V0) relativistic (exact) dephasing model

  13. Steady state spatial electron distributions Multiple resonances W = 3 w W = w W = 2 w Fractional resonances W = 1/2 w W = 1/3 w Q. Su, R.E. Wagner, P.J. Peverly & RG, SPIE (in press)

  14. Scattered light spectra Single orbits non-relativistic relativistic y x Corresponding spectra R.E. Wagner, Q. Su & RG, PRA 60, No.4 (1999)

  15. Summary Numerical solution to the Dirac equation Relativity leads to new phenomena in the spatial and temporal dynamics • subnatural spreading • chaos • novel resonances => novel experiments • cycloatoms • dephasing • scattered light spectra www.phy.ilstu.edu/ILP

More Related