170 likes | 326 Views
The TRI P programme at KVI Tests of the Standard Model at low energy. T rapped R adioactive I sotopes -laboratories for fundamental P hysics. Low energy tests e.g. Time reversal violation precision measurements Stable unstable nuclides nuclear & atomic physics
E N D
The TRIP programme at KVITests of the Standard Modelat low energy Trapped Radioactive Isotopes -laboratories for fundamental Physics • Low energy tests • e.g. Time reversal violation • precision measurements • Stable unstable nuclides • nuclear & atomic physics • The role of trapping nuclides • sample manipulation & detection • Applications and examples • TRIP developments at KVI/AGOR Hans Wilschut KVI – Groningen
any particle will do • dn 0.6 10-27 em • de < 1.6 10-29 em • de (SM) < 10-39 em • find suitable object • Schiff • need amplifier • atomic (Z3) • nuclear • suitable structure time time Consider all nuclides Time reversal violation and the Electric Dipole Moment J d EDM violates parity and time reversal
Time reversal violation in-decay J p q 1800 positron p T q p neutrino J J q AGOR nuclide & appropriate structure neutrino detection recoil measurement
Correlations in -decay • R and D testboth TRV • D most potential • R scalar and tensor (EDM, a) • technique D measurements also gives a, A, b, B
“The Nucleus as micro laboratory” Fermi transitions 0+ 0+ + N N’ e, + Gamow-Teller 1+ 0+ Recoil e e Recoil Vector Scalar Decay probability (phase space) (nuclear structure) (weak interact)
The role of (optical) trapping • Optical trap sample • isotope selective, spin manipulation • point source, no substrate • recoil (ion) mass spectrometry From KVI atomic physics: He2+ + Na S. Knoop 1 a.u.=15 AeV Ideal environment for precision experiments
Correlation experiments Setup at TRIUMF (Behr et al.) for 38mK (t1/2=0.93 s; 0+ 0+)
Typical measured spectrum (Behr) 1.5 s 6 AeV Current value aF=0.992(8)(5) improved statistics ? (3)(3) current limitation: response other attempts: aGT 6He at LPC/GANIL with Paul trap
Status and Future of D coefficient • D in neutron (-0.61.7)10-3 • D in 19Ne < (48)10-4 • Weak magnetism • DWM (19Ne) = 2.610-4 pe/pmax • With measurement of D(pe)momentum dependence two orders of magnitude to be gained. Theory D Im (CVCA*) CKM 10-12 : : Susy 10-7-10-6 LR sym 10-5-10-4 exotic ferm. 10-5-10-4 lepto quark present limit • KVI goes for • 21Na (3/2+3/2+ ; t1/2=22.5 s) 19Ne (1/2+1/2+ ; t1/2=17.3 s) • 20Na(2+ 2+ + / ; t1/2 =0.5 s) 23Mg (3/2+3/2+ ; t1/2=11.3 s) • ( Rate of in-trap decays 105/s)
EDM: What Object to Choose ? • neutron: cold neutron source • , ... • electron: paramagnetic atom • nucleus: diamagenetic atom Not at AGOR 205Tl: d = -585 de 199Hg: d nuclatom Ra: Ra/Hg=(10>1)(10>3) Theoretical input needed
Principle of EDM measurement detection - = E E B precession B state preparation
EDM Now and in the Future 1.610-27 • • 199Hg Radium potential Start TRIP de (SM) < 10-37
Combined Fragment and Recoil Separator beam of radioactive isotopes to decelerator and traps target position in recoil-separator mode(e.g. Ra) target position in fragment separator mode (light isotopes) Primary beam from AGOR cyclotron G.P. Berg O.C. Dermois
Project started 2001 • Program approved July 2001 • Separator out for bids • Magnet delivery summer 2003 • Separator setup and commissioning 2003/2004 • Ready for Experiments End 2004 • In the mean time other preparations: Isotope Production, Gas Stopping, Cooling, RFQ, nuclear and atomic spectroscopy, ... • NIPNET • ION CATCHER • HITRAP Impact on Infrastructure
“Summary” Nuclear Physics Particle Physics P. Dendooven M.N. Harakeh K. Jungmann R. Timmermans L. Willman H.W. Wilschut Atomic Physics R. Morgenstern, R. Hoekstra