1 / 54

MASSIVE THOUGHTS Young-Kee Kim University of California, Berkeley (CDF Experiment at Tevatron)

MASSIVE THOUGHTS Young-Kee Kim University of California, Berkeley (CDF Experiment at Tevatron) University of Chicago February 8, 2002. OUTLINE. Mechanism of giving masses to particles  the Higgs Boson Indirect Probe of the Higgs Boson  Precision Meas.: M Z ,sin 2 q W , M W , M top

tayten
Download Presentation

MASSIVE THOUGHTS Young-Kee Kim University of California, Berkeley (CDF Experiment at Tevatron)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MASSIVE THOUGHTS Young-Kee Kim University of California, Berkeley (CDF Experiment at Tevatron) University of Chicago February 8, 2002

  2. OUTLINE • Mechanism of giving masses to particles  the Higgs Boson • Indirect Probe of the Higgs Boson  Precision Meas.: MZ,sin2qW, MW, Mtop • Direct Searches for the Higgs  current & future

  3. The Standard Theory of Particle Physics in the basic form A Symmetric System of Equations A Symmetric World GeV = 109 eV ~ Mpc2 Mass (GeV) force carriers : spin 1 bosons Leptons Quarks matter particles : spin ½ fermions

  4. Elementary particle masses in the real world Asymmetric World Mass (GeV) Leptons Quarks matter particles : spin ½ fermions force carriers : spin 1 bosons

  5. three most massive particles

  6. Particles Decay via Weak Interactions. nm b m+ t e+ e+ ne ne p (u) n (d) e- ne t b t c Mass (GeV) s m d W+ u e ne nm nt g W+ W-

  7. GF

  8. Sym. System of Eq.s Sym. Solution – Unstable Asym. Solution – Stable Asymmetric World  Spontaneous Sym. Breaking Sym. System of Eq.s Sym. Solution – Stable Symmetric World Add a field into our Symmetric Equations <f>0 0 0 • Add “Higgs” fields (neutral, spin 0) with non-zero vacuum expectation value <f>0 into out equations. • Physical vacuum is filled with Higgs particles, quanta of Higgs fields. (Higgs particles condensed)  Spontaneous Electroweak Symmetry Breaking

  9. n W g e W3 Z A qW B EW e x x x x t x x x x Higgs Particles Condensed g Mg = 0 g x x x MW= g <f>o W x x x x x Z MZ = MW/cosqW x x g = e/sinqW, <f>o-2 = 23/2 GF, MW = 37.3 GeV / sinqW Me= ge <f>o : ge ~ 10-6 ge Mt= gt <f>o : gt ~ 1 gt Higgs Mass : No specific prediction Some consistency conditions restrict MH < 1,000 GeV = 1 TeV

  10. OUTLINE • Mechanism of giving masses to particles  the Higgs Boson • Indirect Probe of the Higgs Boson  Precision Meas.: MZ,sin2qW, MW, Mtop • Direct Searches for the Higgs  current & future

  11. Electroweak Measurements • EW observables probe the Higgs bosons indirectly by means of quantum corrections. • Large quantum corrections to EW observables come from the top quark.

  12. Mtop : Direct vs. Indirect Indirect meas.s : fits to EW observables Direct meas.s : CDF and D0 Lower limits : direct searches in e+e- and pp

  13. Precision EW Measurements Inputs : GF aem(MZ2) MZ

  14. Mtdirect = 174.3 +- 5.1 GeV Mtindirect = 169 +10-8 GeV Mwdirect = 80.448 +- 0.034 GeV Mwindirect = 80.374 +- 0.034 GeV

  15. You should go to the masses, learn from them, and synthesize their experience into better, articulated principles and methods, …… - Mao -

  16. Energy Frontier Accelerators Tevatron (W, Top) LEP (Z, W) 900 GeV p on 900 GeV p 1 : 45 GeV e- on 45 GeV e+ 2 : 80~103 GeV e- on 80~103 GeV e+ SLC (Z) 45 GeV e- on 45 GeV e+

  17. 900 GeV p on 900 GeV p Chicago  Booster CDF DØ Tevatron p source Main Injector (new) Acceleration tt production u Wrigley Field b d e- b n

  18. Accelerators (Colliders) 100 GeV 1000 GeV SLC LEP Eg (Ebeam / M) 4

  19. Detection Tevatron: stt/sinelastic ~ 10-10 W, Z, Top events Contain e, m, n, b, … Detector cross-section n’s will escape, carrying away momentum. B b’s are detected by a silicon device. ~5mm

  20. CDF Detector

  21. - tt candidate (CDF) u b d e- b n

  22. OUTLINE • Mechanism of giving masses to particles  the Higgs Boson • Indirect Probe of the Higgs Boson  Precision Meas.: MZ,sin2qW, MW, Mtop • Direct Searches for the Higgs  current & future • Future Precision Measurements

  23. Precision Measurement of MZ LEP 1,2 s(pb) e+e- cm energy (GeV) 2 e+ e+ f f sff ~ sinqW + g Z e- f e- f Gee Gff s GZ2 12p sff = sg + sg/Z + MZ2 GZ2 (s- MZ2)2 + s2GZ2/MZ2

  24. Precision Meas.s of MZ & sin2qW Mz (LEP1) = 91.1871 +- 0.0021 GeV ~ 2 x 10-5 sin2qeff (LEP1 + SLC) = 0.23156 +- 0.00017 ~ 7 x 10-4 e+ f Z Z e- f

  25. Precision Measurement of MW LEP 2 (e+e-) Tevatron (pp) W- e+ e- u d W+ W+ p p W+ e+n, W- ud W+ e+n 3 Pi(W+) + Pi(W-) = 0, i=1,2,3 Pi(W+) = 0, i=1,2 2 i=1 E(W+) + E(W-) = E(e+) + E(e-) MW = 2PePn(1–cosq3D) MTW = 2PTePTn(1–cosq2D)

  26. Precision Measurement of MW Data Simulation LEP 2 (e+e-) Tevatron (pp) CDF: Ia(’92-’93) D.Saltzberg + H.Frisch (U.Chicago), R.Keup (UI), Y.K.Kim (Berkeley), … Ib(’94-’95) A.Gordon (Harvard), M.Lancaster + Y.K.Kim (Berkeley), … W  en Mw(ALEPH+DELPHI+L3+OPAL) = 80.442 +- 0.040 GeV Mw(CDF+D0) = 80.452 +- 0.062 GeV

  27. Measurement of Mtop at Tevatron tt production u b d e- b n Mtop(CDF+D0) = 174.3 +- 5.1 GeV

  28. Precision EW Measurements MH < 165 ~ 206 GeV at 95% CL Favor light Higgs

  29. EW Measurements (last ~10 years) 1991 Mtop limit Mw (GeV) MH (GeV) 2001 1991 1995 1s prediction year Mtop (GeV)

  30. OUTLINE • Mechanism of giving masses to particles  the Higgs Boson • Indirect Probe of the Higgs Boson  Precision Meas.: MZ,sin2qW, MW, Mtop • Direct Searches for the Higgs  current & future

  31. Light Higgs Searches u e- • If light Higgs exists • Tevatron (1800 GeV pp collider) LEP 2 (200 GeV e+e-) produce them. • Hard to observe • Higgs coupling to stable matter very small. • Low production rate • H  bb swamped by other processes. • Poor signal / background • Strategies • e+e- Z*  Z H • u d  W+*  W+ H (MH < 135 GeV) u u  H  W+W- (MH > 135 GeV) • Low production rate, Clean signature H H u e+ e- b ge H e+ b u b gu g u b

  32. Higgs Searches at LEP 2 (e+e- collider) M > 109 GeV 3.0 ZH, 3.6 bgrn, 6 observed e+e- ZH cross section (fb) e+e- cm energy (GeV) ~2s excess observed in agreement with MH ~ 115 GeV or MH > 113 GeV at 95% CL

  33. ZH Candidates at LEP 2 e+e-bb bb e+e-bb nn ALEPH L3

  34. Higgs Searches : LEP 2  Tevatron & girls LEP 2 Tevatron

  35. Tevatron & CDF/D0 Upgrade (Run II) Chicago  Booster CDF DØ Tevatron p source Main Injector (new) 1992-96 Run I : 0.1fb-1, 1.8TeV 1996-2001 : Major detector upgrades 2001-03 Run IIa : 2 fb-1, 1.96 TeV Short shutdown to install new silicon 2004-07(?) Run IIb : ~ 15 fb-1 Wrigley Field CDF DØ

  36. Tevatron Run IIa EW Measurements Run IIa

  37. Tevatron & CDF/D0 Upgrade (Run II) u W+ W+* - d H W+ H t W- LEP Reach

  38. Run IIb 2004 ~ 2007 (?) 20fb-1 (?) Run IIa 2001 ~ 2003 : 2fb-1

  39. Tevatron Higgs Discovery Potential • By the end of Run IIa (2003 ?) ~2fb-1 we are at limit set by LEP 2 and should have a small number of WH or ZH candidates if MH ~ 115 GeV. • By the end of Run IIb (2007 ?) ~15 fb-1 we should have 3s coverage over most of mass range, MH < 180 GeV. ** Well motivated extensions of the SM predict MH < 130 ~ 150 GeV.

  40. CDF Detector installing silicon tracker, prior to detector roll-in

  41. CDF Silicon System 1.5m ~722 k channels electronics silicon

  42. CDF Drift Chamber Hit Resolution ~200mm Goal : 180mm 96 layers residual dist. (cm) e+ g e- a collaboration of several groups including Y.K.Kim’s group (Berkeley)

  43. CDF Z event candidates Z  e+e- Calorimetery Muon systems Muon system Z m+m-

  44. CDF : Preparing for First Physics … J/ym + m- M(m m) GeV/c2 Kop+ p- L  p p B+ J/y K+ Z  e+ e- W  e n transverse mass Jets

  45. CDF Triggers

  46. CDF Near-term Prospects Physics with 200 pb-1 • B physics • BS mixing • Dsin2b • Top, EWK physics • a larger sample ~ (Run I) x 4 • Extend SUSY and new particle studies • QCD BS DSp, DSppp DS  fp discovery hint SM

  47. Physics beyond the Standard Model e superparticle ~ e+ e- e e Me Me ~ ~ Evolution of aEM, aWeak, aStrong • the Standard Model • Its foundation is symmetry. • Effective Theory • Supersymmetric extensions of the Standard Model • Supersymmetry relates bosons and fermions. • h, H, A, H+, H- • h SM Higgs • Mh < ~130 GeV • Grand Unified Theory • Unification of coupling strengths SUSY SM

  48. Energy Frontier Accelerators to understand origin of Mass necessary to understand EWSB 1991 2021 (year) 2001 2011 LEP (e e ) 208 GeV + - Tevatron (pp) 2 TeV Run I Run II LHC (pp) 14 TeV e e + - (0.5-1 TeV) ? , m+m- (2-4 TeV) ? e e + - pp (~100 TeV) ?

More Related