1 / 37

CS 3013

CS 3013. Binary Search Trees. Definition of a Tree. A Binary tree is a set T of nodes such that either 1. T is empty or 2. T is partitioned into three disjoint subsets. A single node r, the root Two (possibly empty) sets that are binary trees, called left and right subtrees of r. T.

tbelli
Download Presentation

CS 3013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 3013 Binary Search Trees

  2. Definition of a Tree A Binary tree is a set T of nodes such that either 1. T is empty or 2. T is partitioned into three disjoint subsets. A single node r, the root Two (possibly empty) sets that are binary trees, called left and right subtrees of r. T T T Tl Tr

  3. Structure of a Tree root struct Node{ int value; Node * left; Node * right; } 5 class Tree{ Node * _root; public: Tree();//constructor Insert(int); Print(); } 4 6 3 10 7 9

  4. Binary Search Trees • Binary Search Trees (BSTs) are an important data structure for manipulating dynamically changing data sets. • Each node has the following fields: • value: an identifying field inducing a total ordering • left: pointer to a left child (may be NULL) • right: pointer to a right child (may be NULL) • p: (sometimes) pointer to a parent node (NULL for root)

  5. F B H A D K Binary Search Trees • BST property: Value of nodes in left subtree <= roots value Value of nodes in right subtree > roots value • Example:

  6. Inorder Tree Walk • What does the following code do? void TreeWalk(Node * tree){ if(tree!=nullptr){ TreeWalk(tree->left); cout<<tree->value<<endl; TreeWalk(tree->right); }} • A: prints elements in sorted (increasing) order • This is called an inorder tree walk • Preorder tree walk: print root, then left, then right • Postorder tree walk: print left, then right, then root

  7. F B H A D K Inorder Tree Walk • Example: • How long will a tree walk take? • Prove that inorder walk prints in monotonically increasing order

  8. Operations on BSTs: Search • Given a key and a pointer to a node, returns an element with that key or nullptr. This should be private. Why? Node * TreeSearch(Node * ptr, int k){ if (ptr == nullptr)return nullptr; if (ptr->value==k) return ptr; if (k < ptr->value) return TreeSearch(ptr->left, k); else return TreeSearch(ptr->right, k); }

  9. F B H A D K BST Search: Example • Search for D and C:

  10. Operations of BSTs: Insert For a non recursive insert • Adds an element x to the tree so that the binary search tree property continues to hold • The basic algorithm • Like the search procedure above • Insert x in place of nullptr • Use a “trailing pointer” to keep track of where you came from (like inserting into singly linked list)

  11. F B H A D K BST Insert: Example • Example: Insert C C

  12. BST class BST class { Node * _tree; InsertAux(Node* & , constint & ) public: BST(){ _root=nullptr;} ~BST(); // Destructor Insert(int v){InsertAux(_root,v);} }

  13. Aux Method’s • if a method returns a pointer into the tree then the method cannot be public • in this case you need to have two methods • one public and one private. • the public one calls the private method • In main you are only allowed to call the public version.

  14. Recursive Insert in a Class void BST::InsertAux(Node* & tree, const int & item) { if(tree==nullptr) tree=new Node(item); else if (item < tree->value) InsertAux(tree->left, item); else InsertAux(tree->right, item); } Note &’s

  15. What happens when you insert the numbers 1,2,3,…,10 into a BST in that order? you insert the numbers 10.9,…,1 into a BST in that order? Insert these numbers in a BST 5,7,3,1,8,2,6,4 Draw it.

  16. BST Search/Insert: Running Time • What is the running time of TreeSearch() or insertAux()? • A: O(h), where h = height of tree • What is the height of a binary search tree? • A: worst case: h = O(n) when tree is just a linear string of left or right children • We’ll keep all analysis in terms of h for now • Later we’ll see how to maintain h = O(lg n)

  17. BST Destroy the tree BST::~BST(){destroyTree(_root)} void BST::destroyTree(Node *& tree) { if (tree != nullptr;) { destroyTree(tree->left); destroyTree(tree->right); delete tree; tree=nullptr; } }

  18. F Example: delete Kor H or B B H C A D K BST Operations: Delete • Deletion is a bit tricky • 3 cases: • x has no children: • Remove x • x has one child: • Splice out x • x has two children: • Swap the value of x with successor (or predecessor) • Perform case 1 or 2 to delete it

  19. Delete Algorithm void BST::TreeDelete(Node *& root, int x) { if(root!=nullptr){ Node * tempPtr; Node * predPtr; if(x<root->val)TreeDelete(root->left, x); else if(x>root->val)TreeDelete(root->right, x); else { // we have found it so lets delete it // tree points at it right!? // If No children we just delete it if(root->left==nullptr && root->right==NULL){ delete(root); root=nullptr; // what happens when we return; // return here! important! }

  20. Delete Continued with one child // Check to see if the node to delete has only one child if(root->left==nullptr){ // Then splice in the right side tempPtr=root->right; delete root; root=tempPtr; }else if (root->right==NULL){ // splice left tempPtr=root->left; delete(root); root=tempPtr; } else // both children exist! so...

  21. Delete Continued with two children // Here root has two children // We first find the successor { tempPtr=root->right; // Go right // and the all the way to the left while(tempPtr->left!=nullptr){ predPtr=tempPtr; tempPtr=tempPtr->left; } root->val=tempPtr->val; // Copy the value up to the root if(root->right==tempPtr)root->right=tempPtr->right; else predPtr->left=tempPtr->right; delete tempPtr; } root predPtr tempPtr

  22. BST Operations: Delete • Why will case 2 always go to case 0 or case 1? • A: because when x has 2 children, its successor is the minimum in its right subtree • Could we swap x with predecessor instead of successor? • A: yes. Would it be a good idea? • A:See the Eppinger paper!!

  23. Sorting With Binary Search Trees • Informal code for sorting array A of length n: BSTSort(A) BST t; for(auto v:A) t.TreeInsert(v); t.InorderTreeWalk(root);// prints • What will be the running time in the • Worst case? • Average case?

  24. Recursive examples //Number of nodes in a BST tree int BST::NumNodesAux(pTreeNode tree) { if (tree == nullptr)return 0; return 1+NumNodesAux(tree->_left) + NumNodesAux(tree->_right); } Note that public int BST::NumNodes() would call the above

  25. Sum of values in tree //Sum of nodes in a BST tree int BST::SumNodesAux(pTreeNode tree) { if (tree == nullptr)return 0; return tree->value + SumNodesAux(tree->_left) + SumNodesAux(tree->_right); }

  26. Augmentation is sometime nice • For example we could add a variable called size to every node in the tree and store into it the size of the tree rooted at that node. • How could you fill the size variable in this tree? • How would you modify the insert and delete routines to keep this variable up to date?

  27. F B H A D K IPL (internal path length) The IPL of a tree is the sum of the depths of every node in the tree. The depth of the root is 0. 0 1 1 2 2 2 IPL=11 C 3

  28. IPL , average, min, max It turns out that if you build a tree with N randomly chosen values it will have an expected IPL of 1.386*N*log2(N) – 2.846*N What is the minimum IPL of a tree with N node. What is the maximum IPL of a tree with N nodes.

  29. F B H C A D K Left Child Right Sibling Representation F B H A D H C RCLS format Normal format Really is a binary way to represent an n ary tree. Also each child has a pointer to its parent.

  30. Recursive Traversal of a LCRS Tree F LCRST::Traverse(Node * t) { if (t != nullptr) then Traverse(t->child()) If (t->sibling() !=nullptr) then Traverse(t->sibling()) } B H A D H C Here t->child() returns a pointer to the left child and t->sibling() returns a ptr to right child

  31. Algorithm BT->LCRS Format Can you design an algorithm that will convert a binary tree to the left child right sibling format?

  32. Saving a binary search tree in a file • We can do this so the tree gets restored to the original shape. How do we do this? save in preorder ! • Or we can restore it in a balanced shape save in inorder and ?

  33. Loading a balanced tree froma sorted list readTree(Node *& treePtr,int n) { if (n>0) { // read in the left subtree treePtr=new Node(nullptr,nullptr); readTree(treePtr->left,n/2); cin>> treePtr->val; // read in the right subtree readTree(treePtr->right,(n-1)/2); }

  34. F B H A D K Level Order Traversal How do you perform an level by level traversal? Q.enq(root) While(Q not empty){ x = Q.deq(); Print x; Q.enq(left_child); Q.enq(right_child); } NOTE: This uses aqueue as its support data structure

  35. Expression Trees + * + + X 3 Y W 5 W + 5 * X + 3 + Y inorder traversal ((W+5)*X + (3+Y)) with parens How about preorder and postorder traversals?

  36. Problem A preorder traversal of a binary tree produced ADFGHKLPQRWZ and an inorder traversal produced GFHKDLAWRQPZ Draw the binary tree.

  37. Program to Build Tree void BuildTree(string in,string post) { char root; int len=in.length(); // NOTE: Last char of postorder traveral is the root of the tree if(len==0)return; root=post[len-1]; cout<<root; // print the root // Search for root in the inorder traversal list int i=0; while(in[i]!=root)i++; // skip to the root // i now points to the root in the inorder traversal // The chars from 0 to i-1 are in the left subtree and // the chars from i+1 to len_in-1 are in the right sub tree. // Process left sub tree BuildTree(in.substr(0,i),post.substr(0,i)); //Process right sub tree BuildTree(in.substr(i+1,len-i-1), post.substr(i,len-i-1)); } 0 1 2 . . . substr(start, len)

More Related