1 / 6

Skin Cancer Detection using Digital Image Processing and Implementation using ANN and ABCD Features

Melanoma is a serious type of skin cancer. It starts in skin cells called melanocytes. There are 3 main types of skin cancer, Melanoma, Basal and Squamous cell carcinoma. Melanoma is more likely to spread to other parts of the body. Early detection of malignant melanoma in dermoscopy images is very important and critical, since its detection in the early stage can be helpful to cure it. Computer Aided Diagnosis systems can be very helpful to facilitate the early detection of cancers for dermatologists. Image processing is a commonly used method for skin cancer detection from the appearance of affected area on the skin. In this work, a computerised method has been developed to make use of Neural Networks in the field of medical image processing. The ultimate aim of this paper is to implement cost effective emergency support systems to process the medical images. It is more advantageous to patients. The dermoscopy image of suspect area of skin cancer is taken and it goes under various pre processing technique for noise removal and image enhancement. Then the image is undergone to segmentation using Thresholding method. Some features of image have to be extracted using ABCD rules. In this work, Asymmetry index and Geometric features are extracted from the segmented image. These features are given as the input to classifier. Artificial Neural Network ANN with feed forward architecture is used for classification purpose. It classifies the given image into cancerous or non cancerous. The proposed algorithm has been tested on the ISIC International Skin Imaging Collaboration 2017 training and test datasets. The ground truth data of each image is available as well, so performance of this work can evaluate quantitatively. Khaing Thazin Oo | Dr. Moe Mon Myint | Dr. Khin Thuzar Win "Skin Cancer Detection using Digital Image Processing and Implementation using ANN and ABCD Features" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: https://www.ijtsrd.com/papers/ijtsrd18751.pdf Paper URL: http://www.ijtsrd.com/engineering/electronics-and-communication-engineering/18751/skin-cancer-detection-using-digital-image-processing-and-implementation-using-ann-and-abcd-features/khaing-thazin-oo<br>

Download Presentation

Skin Cancer Detection using Digital Image Processing and Implementation using ANN and ABCD Features

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. International Journal of Trend in International Open Access Journal International Open Access Journal | www.ijtsrd.com International Journal of Trend in Scientific Research and Development (IJTSRD) Research and Development (IJTSRD) www.ijtsrd.com ISSN No: 2456 ISSN No: 2456 - 6470 | Volume - 2 | Issue – 6 | Sep 6 | Sep – Oct 2018 Digital Image Processing and ABCD Features Skin Cancer Detection Implementation Implementation using ANN and ABCD Features Skin Cancer Detection using Digital Image Processing 1, Dr. Moe Mon Myint2, Dr. Khin Thuzar Win 1Assistant Lecturer, 2,3Professor Department of Electronics Engineering, 3Department of Mechronics Engineering Khaing Thazin Oo1 Dr. Khin Thuzar Win3 1,2Department of Electronics Engineering, Pyay Technological University, Myanmar Pyay Technological University, Myanmar Department of Mechronics Engineering, ABSTRACT Melanoma is a serious type of skin cancer. It starts in skin cells called melanocytes. There are 3 main types of skin cancer, Melanoma, Basal and Squamous cell carcinoma. Melanoma is more likely to spread to other parts of the body. Early detection of malignant melanoma in dermoscopy images is very important and critical, since its detection in the early stage can be helpful to cure it. Computer Aided Diagnosis systems can be very helpful to facilitate the early detection of cancers for dermatologists. Image processing is a commonly used method for skin cancer detection from the appearance of affected area on the skin. In this work, a computerised method has been developed to make use of Neural Networks in the field of medical image processing. The ultimate aim of this paper is to implement cost emergency support systems; to process the medical images. It is more advantageous to patients. The dermoscopy image of suspect area of skin cancer is taken and it goes under various pre technique for noise removal and image enhancement. Then the image is undergone to segmentation using Thresholding method. Some features of image have to be extracted using ABCD rules. In this Asymmetry index and Geometric features are extracted from the segmented image. These features are given as the input to classifier. Artificial Neural Network (ANN) with feed forward architecture is used for classification purpose. It classifies the image into cancerous or non-cancerous. The proposed algorithm has been tested on the ISIC (International Skin Imaging Collaboration) 2017 training and test datasets. The ground truth data of each image is available as well, so performance of this wor evaluate quantitatively. Keyword: Skin cancer, Segmentation, Feature Extraction, Classification, Melanoma I. INTRODUCTION Skin cancers can be classified into melanoma and non-melanoma. Melanoma is a malignancy of the cells which gives the skin its colo and it can invade nearby tissues. Moreover, it spreads through the whole human body and it might cause to patient death and non-melanoma which is rarely spread to other parts of the human body. Malignant melanoma is the most aggressive type cancers and its incidence has been rapidly increasing [1] [2] [3] [4]. Nevertheless, it is also the most treatable type of skin cancer if detected or diagnosed at an early stage [5]. The diagnosis of melanoma in early stage is a challenging and fundamental task for dermatologists since some other skin lesions may have similar physical characteristics. Dermos considered as the widely common technique used to perform an in-vivo observation of pigmented skin lesions [6]. In early detection of malignant melanoma, dermoscopic images have great potential, but their interpretation is time consuming and subjective, even for trained dermatologists. Therefore, the need to build a system which can assist dermatologists to get right decision for their diagnosis has become very important. Image processing is one of the widely used methods for skin cancer detection. Dermoscopy could be a non-invasive examination technique supported the cause of incident light beam and oil immersion technique to form potential the visual investigation of surface structures of the skin. The detection of melanoma using dermoscopy is higher than individual observation based detection [ detection [3], but its diagnostic n cancer, Segmentation, Feature Classification, Melanoma Melanoma is a serious type of skin cancer. It starts in skin cells called melanocytes. There are 3 main types of skin cancer, Melanoma, Basal and Squamous cell is more likely to spread to other parts of the body. Early detection of malignant copy images is very important and critical, since its detection in the early stage can be helpful to cure it. Computer Aided Diagnosis elpful to facilitate the early detection of cancers for dermatologists. Image processing is a commonly used method for skin cancer detection from the appearance of affected area on the skin. In this work, a computerised method has Skin cancers can be classified into melanoma and melanoma. Melanoma is a malignancy of the cells which gives the skin its colour (melanocytes) and it can invade nearby tissues. Moreover, it spreads through the whole human body and it might cause to melanoma which is rarely spread to other parts of the human body. Malignant melanoma is the most aggressive type of human skin cancers and its incidence has been rapidly increasing [1] [2] [3] [4]. Nevertheless, it is also the most treatable type of skin cancer if detected or diagnosed at an early stage [5]. The diagnosis of melanoma in e of Neural Networks in the field of medical image processing. The ultimate aim of this paper is to implement cost-effective and fundamental task for to process the medical dermatologists since some other skin lesions may have similar physical characteristics. Dermoscopy is considered as the widely common technique used to vivo observation of pigmented skin It is more advantageous to patients. The of skin cancer is taken and it goes under various pre-processing technique for noise removal and image enhancement. Then the image is undergone to segmentation using sholding method. Some features of image have to be extracted using ABCD rules. In this work, Asymmetry index and Geometric features are extracted from the segmented image. These features are given as the input to classifier. Artificial Neural Network (ANN) with feed forward architecture is used for classification purpose. It classifies the given n of malignant melanoma, dermoscopic images have great potential, but their interpretation is time consuming and subjective, even for trained dermatologists. Therefore, the need to build a system which can assist dermatologists to get eir diagnosis has become very Image processing is one of the widely used methods for skin cancer detection. Dermoscopy could be a invasive examination technique supported the cause of incident light beam and oil immersion otential the visual investigation of surface structures of the skin. The detection of melanoma using dermoscopy is higher than individual cancerous. The proposed algorithm has been tested on the ISIC (International Skin Imaging Collaboration) 2017 training and test datasets. The ground truth data of each image is available as well, so performance of this work can @ IJTSRD | Available Online @ www.ijtsrd.com www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Oct 2018 Page: 962

  2. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 accuracy depends on the factor of training the dermatologist. The diagnosis of melanoma from melanocytic nevi is not clear and easy to identify, especially in the early stage. Thus, automatic diagnosis tool is more effective and essential part of physicians. Even when the dermoscopy for diagnosis is done with the expert dermatologists, the accuracy of melanoma diagnosis is not more than 75-84% [4]. The computer aided diagnostics is more useful to increase the diagnosis accuracy as well as the speed [5]. The computer is not more inventive than human but probably it may be able to extract some information, like colour variation, asymmetry, texture features, more accurately that may not be readily observed by naked human eyes [5]. There have been many proposed systems and algorithms such as the s point checklist, ABCD rule, and the Menzies [2, 3] to improve the diagnostics of the melanoma skin cancer. The key steps in a computer-aided diagnosis of melanoma skin cancer are image acquisition of a skin lesion, segmentation of the skin lesion from skin region, extraction of geometric features of the lesion blob and feature classification. Segmentation or border detection is the course of action of separating the skin lesion of melanoma from the circumferential skin to form the area of interest. Feature extraction is done to extract the geometric features which are accountable for increasing corresponding to those dermatologists, that meticulously characterizes a melanoma lesion. The feature extraction methodology of many computerised melanoma detection systems has been largely depending on the conventional clinical diagnostic algorithm of ABCD-rule of dermoscopy due to its effectiveness implementation [7]. The effectiveness of methodology stems from the fact that it incorporates the classic features of a melanoma lesion such as asymmetry, border irregularity, colour differential structures), where surveyable measures can be computed. Dermoscopy is a diagnostic technique that is used worldwide in the recognition and interpretation of copious skin lesions [4]. Other than dermoscopy, a copious skin lesions [4]. Other than dermoscopy, a accuracy depends on the factor of training the computerised melanoma detection using Artificial Neural Network classification has been adapted which is efficient than the conventional one and Melanoma Neural Network is a more effective method compared to other. computerised melanoma detection using Artificial Neural Network classification has been adapted which is efficient than the conventional one and Melanoma detection using Artificial Neural Network is a more effective method compared to other. II. Methodology The following steps are implemented for classification of skin cancer. ?Image Acquisition ?Pre-processing ?Segmentation ?Feature Extraction ?Classification The first step is the capture image is acquired from the ISI through MATLAB. The second step is image pre processing, the pre-processing technique can be applied to eliminate the irrelevant data contains in the image. The skin lesion regions such as oils, hairs are removed from the original image using median filter techniques. The third step is image segmentation: the goal of image segmentation is to make simpler change the representation of an image into something that is more meaning analyze. The next step is image enhancement; to improve the quality of the image so that the consequential image is better than the original image. In this step, the required region is segmented out and detected the edge of the skin lesio feature extraction and the final step is classification of the skin lesion image. iagnosis of melanoma from melanocytic nevi is not clear and easy to identify, especially in the early stage. Thus, automatic diagnosis tool is more effective and essential part of physicians. Even when the dermoscopy for diagnosis is done with the expert ermatologists, the accuracy of melanoma diagnosis The following steps are implemented for classification 4]. The computer aided diagnostics is more useful to increase the diagnosis The computer is not more inventive than human but le to extract some information, like colour variation, asymmetry, texture features, more accurately that may not be readily observed by 5]. There have been many proposed systems and algorithms such as the seven- The first step is the capture image the skin lesion image is acquired from the ISIC 2018 database through MATLAB. The second step is image pre- processing technique can be applied to eliminate the irrelevant data contains in the image. The skin lesion regions such as label, marks, oils, hairs are removed from the original image using median filter techniques. The third step is image segmentation: the goal of image segmentation is to make simpler change the representation of an image into something that is more meaningful and easier to analyze. The next step is image enhancement; to improve the quality of the image so that the consequential image is better than the original image. In this step, the required region is segmented out and detected the edge of the skin lesion. The fourth step is feature extraction and the final step is classification of and the Menzies method ] to improve the diagnostics of the melanoma aided diagnosis of melanoma skin cancer are image acquisition of a skin lesion, segmentation of the skin lesion from skin geometric features of the lesion blob and feature classification. Segmentation or border detection is the course of action of separating the skin lesion of melanoma from the circumferential skin to form the area of interest. Feature extraction is xtract the geometric features which are accountable for increasing the the accuracy; detected detected accuracy; visually ally by by that meticulously characterizes a The feature extraction methodology of many detection systems has been largely depending on the conventional clinical Fig. 1System Block Diagram System Block Diagram image rule of dermoscopy A.Pre-processing In this work, few previous processing techniques are needed. Prior to segmentation, all processed in order to minimize undesirable features that could affect the performance of the algorithm such as reflections, presence of the hair and colo differences between images. The image is also normalized to a unique size and shape. normalization allows for the comparison of the region features such as positions and sizes between different images. and simplicity simplicity of of In this work, few previous processing techniques are needed. Prior to segmentation, all images are pre- processed in order to minimize undesirable features that could affect the performance of the algorithm such as reflections, presence of the hair and colour differences between images. The image is also normalized to a unique size and shape. This normalization allows for the comparison of the region features such as positions and sizes between different ]. The effectiveness of methodology tes the classic features of a melanoma lesion such as asymmetry, border irregularity, colour differential structures), where surveyable measures and and diameter diameter (or (or Dermoscopy is a diagnostic technique that is used n and interpretation of @ IJTSRD | Available Online @ www.ijtsrd.com www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Oct 2018 Page: 963

  3. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 1.Area (A): Number of pixels of the lesion. 2.Perimeter (P): Number of pixels detected boundary 3.Greatest Diameter (GD): The length of the line which connects the two farthest 4.Shortest Diameter (SD): The length of the line connecting the two closest boundary points and passes across the lesion centroid. 5.Circularity Index (CRC): It explains the shape uniformity. 6.Irregularity Index A (IrA): 7.Irregularity Index B (IrB): 8.Irregularity Index C (IrC): 9.Irregularity Index D (IrD): Diameter: Diameter in pixels E.Classification The main issue of the classification task is to avoiding over fitting caused by the sma skin lesion in most dermatology datasets. In order to solve this problem, the objective of the proposed model is to firstly extract features from images and secondly load those extracted representations on ANN network to classify. III. Performance Evaluation Parameter The most common performance measures consider the model’s ability to discern one class versus all others. The class of interest is known as the positive class, while all others are known as negative. The relationship between positive class and negative class predictions can be depicted as a 2 matrix that tabulates whether predictions fall into one of four categories: ?True positives (TP): These refer to the positive tuples that were correctly label classifier. It is assumed that TP is the number of true positives. ?True negatives (TN): These are the negative tuples that were correctly labelled by the classifier. It is assumed that TN is the number of true negatives. ?False positive (FP): These are the ne that were incorrectly labe assumed that FP is the number of false positives. ?False negative (FN): These are the positive tuples that were mislabelled as negative. It is assumed that FN is the number of false negatives. Accuracy can be calculated by using this e Accuracy ? ????? ?????? ?? B.Skin Lesion Segmentation Image segmentation is an essential process for most image analysis subsequent tasks. Segmentation divides an image into its constituent regions or objects. The goal of segmentation is to make simpler or change the representation of an image into something that is more meaningful and easier to analyse. Image segmentation is the course of action of segregating an image into multiple parts, which is used to identify objects or other relevant information in digital images. Background subtraction, also known as blob detection, is an emerging technique in the fields of image processing wherein an image’s foreground is extracted for further processing. Typically, an image’s regions of interest are objects in its foreground. Segmentation methods can be classified as thresholding, region based, Edge based and clustering. In this work, thresholding is used because of the computationally inexpensive and fast and simple to implement. C.Post-processing Once binary image of skin lesion has been obtained, the image then needs to be post processed in order to resolve any problems there may be as follows: ?To prevent edges which are dark in many of the images, from remaining as part of the lesion mask; ?To reduce any effects of disturbing artifacts as far as possible; ?To set soft edges, to ensure there are not too many recesses or projections and that there is certain convexity in the resulting mask These problems can be morphological operation such as opening, closing and filling process. D.Feature Extraction The foremost features of the Melanoma Skin Lesion are its Asymmetric Index, Border features, Colo Diameter. Hence, this system is proposed to extract the (9) Geometric Features, (1) Asymmetry Index and (1) diameter of the segmented skin lesion. These features are adopted from the segmented image containing only skin lesion, the image blob of the skin lesion is analyzed to extract the 11 features Asymmetry Features: Major and Minor Asymmetry Indices: Geometric Features: A): Number of pixels of the lesion. Number of pixels along the Image segmentation is an essential process for most image analysis subsequent tasks. Segmentation image into its constituent regions or objects. The goal of segmentation is to make simpler or change the representation of an image into something that is more meaningful and easier to ): The length of the line connects the two farthest Shortest Diameter (SD): The length of the line connecting the two closest boundary points and passes across the lesion centroid. Circularity Index (CRC): It explains the shape Image segmentation is the course of action of image into multiple parts, which is used to identify objects or other relevant information in digital images. Background subtraction, also known as blob detection, is an emerging technique in the fields of image processing wherein an image’s extracted for further processing. Typically, an image’s regions of interest are objects in its foreground. Segmentation methods can be classified as thresholding, region based, Edge based Irregularity Index A (IrA): Irregularity Index D (IrD): Diameter in pixels The main issue of the classification task is to avoiding over fitting caused by the small number of images of skin lesion in most dermatology datasets. In order to solve this problem, the objective of the proposed model is to firstly extract features from images and extracted representations on an thresholding is used omputationally inexpensive and fast Once binary image of skin lesion has been obtained, the image then needs to be post processed in order to resolve any problems there may be as follows: Performance Evaluation Parameter The most common performance measures consider the model’s ability to discern one class versus all others. The class of interest is known as the positive class, while all others are known as negative. The en positive class and negative class predictions can be depicted as a 2 ? 2 confusion matrix that tabulates whether predictions fall into one dark in many of the images, from remaining as part of the lesion mask; To reduce any effects of disturbing artifacts as far To set soft edges, to ensure there are not too many recesses or projections and that there is certain P): These refer to the positive These morphological operation such as opening, closing and problems can be reduces reduces by by using using tuples that were correctly labelled by the assifier. It is assumed that TP is the number of True negatives (TN): These are the negative tuples ed by the classifier. It is assumed that TN is the number of true negatives. False positive (FP): These are the negative tuples that were incorrectly labelled as positive. It is assumed that FP is the number of false positives. False negative (FN): These are the positive tuples led as negative. It is assumed that FN is the number of false negatives. The foremost features of the Melanoma Skin Lesion are its Asymmetric Index, Border features, Colour and Diameter. Hence, this system is proposed to extract the (9) Geometric Features, (1) Asymmetry Index and (1) diameter of the segmented skin lesion. These features are adopted from the segmented image containing only skin lesion, the image blob of the skin act the 11 features. racy can be calculated by using this equation: Asymmetry Features: Major and Minor Asymmetry ?????? ?? ??????? ??????? ??????????? ?? ??????????? (1) @ IJTSRD | Available Online @ www.ijtsrd.com www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Oct 2018 Page: 964

  4. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 TP ? TN TP ? TN ? FP ? FN International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 ? As indicated in Equation (1), accuracy only measures the number of correct predictions of the classifier and ignores the number of incorrect predictions. Sensitivity, also known as recall, is computed as the fraction of true positives that are correctly identified. TP y Sensitivit + Precision, which is computed as the fraction of retrieved instances that are relevant. TP Precision + Specificity, computed as the fraction of true negatives that are correctly identified. TN y Specificit + IV. Test And Results A.Results of Segmentation Process There are three main phases: namely pre segmentation and post-processing in segmentation part. The input of the system is dermoscopic image o skin lesion as shown in Fig. 2. After resizing the input image, this image will convert to the gray scale in order to get grater separability between the lesion and background healthy skin. The resultant image has been displayed. Most of the dermoscopic images have some artifacts such as oil, bubble hair, noise etc. these artifacts are removed by median filter on gray scale image. After this, the Otsu’s thresholding method has been applied on the gray scale intensity image. This gives the desired segmented image. After these steps morphological operations are used to enhance the segmented image. In this research work, morphological opening, dilation, erosion and closing operations are used. A morphological closing of the mask is performed using a disk of radius 500 pixels followed by a dilation using a disk of radius 40 pixels. These operations smooth the border of the mask. The experimental results for this post-processing phase are shown in Fig. 3. , accuracy only measures the number of correct predictions of the classifier and ignores the number of incorrect predictions. , is computed as the s that are correctly identified. Fig.2. Testing result of pre result of pre-processing and (2) = segmentation segmentation TP FN which is computed as the fraction of (3) = TP FP , computed as the fraction of true negatives (4) = TN FP Fig.3. Testing result of segmented image after dilation and erosion B.Results of Classification The first stage of the system is to select skin lesion images. This can click original image menu item from main window GUI of the proposed system. After loading the input image, it is needed to segment the lesion image by using O Technique. The segmented image obtained from Otsu's thresholding has the advantages of smaller storage space, fast processing speed and ease in manipulation, compared with gray usually contains 256 levels. In feature extraction, the standard features such as Asymmetry Index, Area, Perimeter, Major Axis Length, Minor Axis length, Circularity Index, Irregularity Index and diameter are segmented test image as shown in Fig. standard features are very useful to classify the melanoma skin cancer more accurately. After extracting the features, these features are given as input to the classifier. The classifier produces whether the image is Melanoma or not. For the Melanoma condition, the classifier o normal skin (not melanoma) the output is 0. By pressing the classify button, the classification process is performed and the result is displayed as shown in Fig. 7 and 8. result of segmented image after dilation and erosion namely pre-processing, processing in segmentation The first stage of the system is to select skin lesion This can click original image menu item from main window GUI of the proposed system. part. The input of the system is dermoscopic image of . After resizing the input gray scale image After loading the input image, it is needed to segment the lesion image by using Otsu's Thresholding Technique. The segmented image obtained from Otsu's thresholding has the advantages of smaller storage space, fast processing speed and ease in n, compared with gray level image which in order to get grater separability between the lesion and background healthy skin. The resultant gray scale image has been displayed. Most of the dermoscopic images have some artifacts such as oil, bubble hair, ved by applying scale image. After this, the Otsu’s thresholding method has been applied on the scale intensity image. This gives the desired extraction, the standard features such as Asymmetry Index, Area, Perimeter, Major Axis Length, Minor Axis length, Circularity Index, Irregularity Index and diameter are extracted from the ted test image as shown in Fig.6. These ery useful to classify the melanoma skin cancer more accurately. After these steps morphological operations are used to ented image. In this research work, morphological opening, dilation, erosion and closing operations are used. A morphological closing of the med using a disk of radius 500 pixels followed by a dilation using a disk of radius 40 pixels. operations smooth the border of the mask. The After extracting the features, these features are given er. The classifier produces whether the image is Melanoma or not. For the Melanoma condition, the classifier output is 1 and for normal skin (not melanoma) the output is 0. By pressing the classify button, the classification process ult is displayed as shown in essing phase are @ IJTSRD | Available Online @ www.ijtsrd.com www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Oct 2018 Page: 965

  5. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 Fig.4. Loading Input Image 4. Loading Input Image Fig.7. Classification Results of Melanoma 7. Classification Results of Melanoma Fig.5. After Segmentation 5. After Segmentation Fig.8. Classification Results of Non 8. Classification Results of Non-Melanoma C.Performance Evaluation To evaluate performance in this system, 40 images from a test data set are tested. The accuracy of skin lesion classification system is calculated. Table 1 describes the performance of the proposed system. TABLE I Performance of The Proposed System Performance of The Proposed System performance in this system, 40 unknown images from a test data set are tested. The accuracy of system is calculated. Table describes the performance of the proposed system. N o . Im age Set Acc urac Acc urac y y Pre cisi on Spe cific ity TPF T N F N Sensi tivity P Tes t ing Set 92.5 92.5 % % 94.7 % 90 % 90.4 7% 1 18 2 19 1 Fig.6. Extracted Features from Testing Image Fig.6. Extracted Features from Testing Image @ IJTSRD | Available Online @ www.ijtsrd.com www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Oct 2018 Page: 966

  6. International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456 International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 V. In this work, the system for melanoma skin cancer detection system is developed by using MATLAB. Image segmentation is the first step in early detection of melanoma skin cancer. To analyze skin lesions, it is necessary to accurately locate and isolate the lesions. In this thesis work, the Otsu’s method is the oldest and simplest one. It has shown the best segmentation results among the three methods. Feature extraction is considered as the most critical state–of-the- art skin cancer screening system. In this thesis, the feature extraction is based on ABCD of dermatoscopy. Algorithms for extracting features have been disused. All the features have been calculated based on Otsu’s segmentation method. Using the Neural Network classifier, melanoma skin cancer diagnosis with a training accuracy of 100% and testing accuracy Computational time is around 14 seconds fo lesion classification. For illustration, a graphical user interface has developed in order to facilitate the diagnostic task for the dermatologists. Acknowledgment Firstly, the author would like to acknowledge particular thanks to Union Minister of the Ministry of Science and Education, for permitting to attend the Master program at Pyay Technology University. Much gratitude is owed to Dr. Nyaunt Soe, Rector, Pyay Technological University, for his kind permission to carry out this paper. The author i deeply thankful to her supervisor, Dr. Moe Mon Myint, Professor, Department Engineering, Pyay Technological University, fo helpful and for providing guidelines. Moreover, the author wishes to express special thanks to Dr. Khin Thu Zar Win, Professor and Head, Department of Mechatronic Engineering, University, Pyay for her kindness and suggestions. Finally, I would like to thank my parents for supporting to me. Conclusions References 1.Xu L, Jackowski M, Goshtasby A, Roseman, “Segmentation of cancer images”, Image and Vision Computing, Volume 17, Issue1, pg. 65 2.J Abdul Jaleel, Sibi Salim, Aswin. “Computer Aided Detection 01 Skin Cancer”, International Conference on Circuits, Power and Computing Technologies, 2013 3.Arroyo J L G and Zapirain B G Detection 01 Skin Cancer”, Computers in biology and biology and medicine 44 14157 4.Dr. S. Gopinathan, S. “Feature Extraction through Image Processing Techniques”, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Volume 5, Issue 4, July Web Site:www.ijettcs.org 5.Uzma Bano Ansari, “Skin Cancer Detection Using Image Processing”, International Research Journal of Engineering and Technology (IRJET), Volume: 04 | Apr-2017 6.Shivangi jain, Vandana jagtap, Nitin Pise, “Computer Aided Melanoma Skin Cancer Detection Using Image Processing”, Internal Conference on Communication & Convergence, Vol 48, pp 725 740, 2015, http://www.sciencedirect.com/science/article/pii/S 1877050915007188 7.M. Elbaum, “Computer diagnosis”, Dermatologic clinics, vol. 20, pp. 735 747, 2002 In this work, the system for melanoma skin cancer detection system is developed by using MATLAB. ckowski M, Goshtasby A, Roseman, tation of cancer images”, Image and Vision Computing, Volume 17, Issue1, pg. 65-74. step in early detection of melanoma skin cancer. To analyze skin lesions, it is necessary to accurately locate and isolate the lesions. In this thesis work, the Otsu’s method is the oldest and simplest one. It has shown the best J Abdul Jaleel, Sibi Salim, Aswin. R. B, “Computer Aided Detection 01 Skin Cancer”, International Conference on Circuits, Power and Computing Technologies, 2013 the three methods. and Zapirain B G, “Computer Aided Detection 01 Skin Cancer”, 2014, Computers in Computers in biology and .medicine 44 14157 biology and medicine 44 14157 Feature extraction is considered as the most critical art skin cancer screening system. In this d on ABCD-rule Algorithms for extracting features the features have been Nancy Arokia Rani, calculated based on Otsu’s segmentation method. Using the Neural Network classifier, melanoma skin cancer diagnosis with a training accuracy of 100% and testing accuracy Computational time is around 14 seconds for each lesion classification. For illustration, a graphical user interface has developed in order to facilitate the “Feature Extraction through Image Processing national Journal of Emerging Trends & Technology in Computer Science sue 4, July-August 2016, of of 93% 93% is is achieved. achieved. Uzma Bano Ansari, “Skin Cancer Detection Using Image Processing”, International Research Journal and Technology (IRJET), Volume: Firstly, the author would like to acknowledge Shivangi jain, Vandana jagtap, Nitin Pise, “Computer Aided Melanoma Skin Cancer Detection Using Image Processing”, Internal Conference on Communication & Convergence, Vol 48, pp 725- 015, .sciencedirect.com/science/article/pii/S the Ministry of Science and Education, for permitting to attend the Master program at Pyay Technology University. Much gratitude is owed to Dr. Nyaunt Soe, Rector, Pyay Technological University, for his kind permission to carry out this paper. The author is r supervisor, Dr. Moe Mon Professor, Department Engineering, Pyay Technological University, for her Intelligent Intelligent Computing Computing ISSN ISSN 1877 1877-0509, of of Electronic Electronic M. diagnosis”, Dermatologic clinics, vol. 20, pp. 735- Elbaum, “Computer-aided melanoma guidelines. Moreover, the author wishes to express special thanks to Dr. Khin in, Professor and Head, Department of Mechatronic Engineering, University, Pyay for her kindness and suggestions. Finally, I would like to thank my parents for Pyay Pyay Technological Technological @ IJTSRD | Available Online @ www.ijtsrd.com www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Oct 2018 Page: 967

More Related