1 / 36

MATH/CHEM/COMP 2011

MATH/CHEM/COMP 2011. HYPERBOLIC ANALOG OF THE EASTWOOD-NORBURY FORMULA FOR ATIYAH DETERMINANT Dragutin Svrtan. Euclidean and Hyperbolic Geometry of point particles: A progress on the tantalizing Atiyah-Sutcliffe conjectures.

teddy
Download Presentation

MATH/CHEM/COMP 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MATH/CHEM/COMP 2011 HYPERBOLIC ANALOG OF THE EASTWOOD-NORBURY FORMULA FOR ATIYAH DETERMINANT Dragutin Svrtan

  2. Euclidean and Hyperbolic Geometry of point particles: A progress on the tantalizingAtiyah-Sutcliffe conjectures • Motivation:BERRY-ROBBINS PROBLEM(1997) coming from spin-statistics in particle physics • C_n(R^3):=configuration space of n ordered distinct points/particles in R^3 • ------------------------------------------------------------------------------------------ • PROBLEM: Does there exists a continuous equivariant map • f_n:C_n(R^3)U(n)/T^n • (=space of n orthogonal complex lines)? • ----------------------------------------------------------------------------------------- • (leading to a connection between classical and quantum physics) • ATIYAH’s candidate map (2001) (via elementary construction, but not yet justified even for small n ) gave a renaissance to classical (euclidean and noneuclidean ) geometries and interconnects them with many other areas of modern mathematics.

  3. 3 POINTS INSIDE CIRCLE • Three points 1,2,3 inside circle (|z|=R) • 3 point-pairs on circle • P1(u12) (u13) • P2 (u21) (u23) • P3 (u31) (u32) • point-pair u12,u13 define quadratic with these roots • p1:= (Z-u12)*(Z-u13) • 3 point-pairs ---> 3 quadratics • P1, P2, P3 ---> { p1, p2, p3} • THEOREM 1(Atiyah 2001). For any triple 1,2,3 of distinct points inside circle the 3 quadratics { p1, p2, p3} are linearly independent • Remark: Atiyah – synthetic proof which does not generalize to more than 3 points

  4. SPECIAL CASE OF 3 COLLINEAR POINTS • (u31)=(u32)=(u21) =-1|---x----x------x--------| (u12)=(u13)=(u23) =1 1 2 3 p1 (Z-1)^2 p2 (Z-1)*(Z+1) p3 (Z+1)^2 clearly linearly independent THEOREM1 : 3-by-3 determinant of the coefficient matrix 1 –u12-u13 u12*u13 det(M3) = det ( 1 -u21-u23 u21*u23 ) ≠ 0 1 -u31-u32 u31*u32

  5. NORMALIZED DETERMINANT D3_R • Atiyah : normalized determinantD3=D3_R (continuous on unordered triples of distinct points in open disk of radius R) ... Atiyah’s geometric energy • det(M3) • D3:= ------------------------------------------ • ( u12-u21)*(u13-u31)*(u23-u32) • D3=1 only for collinear points • THM 2 (ATIYAH-synthetic proof): D3R1 . • (THM.2 => THM.1) • R N LIMIT GIVES THE EUCLIDEAN CASE • Points on “circle at N” are directions in plane • THM.1 and THM.2 are also true for R =N .

  6. EXPLICIT FORMULAS FOR D3 EXTRINSIC FORMULA: (u21 – u31) (u13 – u23) (u12 -u32) D3= 1 + ---------------------------------------------- (u12 - u21) (u13 - u31) (u23 - u32) • INTRINSIC FORMULA: For hyperbolic triangles (0< A+B+C< π): • D3 = ½*(cos^2(A/2)+ cos^2(B/2)+ cos^2(C/2)) -1/2*Φ --------------------------------------------------------------------------------------------------- ------------- • where: Φ^2:= cos(A+B+C)/2*cos(-A+B+C)/2*cos(A-B+C)/2*cos(A+B-C)/2 = ¼*(-1+cos^2(A)+cos^2(B)+cos^2(C)+2*cos(A)*cos(B)*cos(C))

  7. Hilbert’s Arithmetic of Ends

  8. INTRINSIC FORMULA for D3 • INTRINSIC FORMULA involving side lengths a,b,c (p=(a+b+c)/2 semiperimeter) • D3 = 1+exp(-p)* ∏ sinh(p-a)/sinh(a) • (=> TH2 Intrinsic proof) • EUCLIDEAN CASE: If we define 3-point functionby • d3(a,b,c):=(-a+b+c)*(a-b+c)*(a+b-c) • then • D3= ½*(cos^2(A/2)+ cos^2(B/2)+ cos^2(C/2)) • By cosine law: • D3=1+ (-a+b+c)*(a-b+c)*(a+b-c)/8*a*b*c

  9. SEVEN NEW ATIYAH-TYPE TRIANGLE’S ENERGIES • We introduce 7 new Atiyah-type energies D3_ ε, ε=100,...,111 • (with D3_000=D3) • D3_001= 1-exp(-p+c)*sinh(p)*sh(p-a)* sh(p-b)/ ∏ sinh(a) • D3_110= 1-exp(p-c)*sinh(p)*sh(p-a)* sh(p-b)/ ∏ sinh(a) • D3_111= 1+exp(p)*∏ sinh(p-a)/sinh(a) • D3_111 = ½*(cos^2(A/2)+ cos^2(B/2)+ cos^2(C/2)) +1/2* Φ THEOREM2’(D.S): (i) D3_ εR 1, for ε= 000 , 111. (ii) 0<D3_ ε#1, for ε≠ 000 , 111. (iii) D3_000+ D3_100+...+D3_110+...+D3_111=6=3!

  10. Equations for Atiyah 3pt energies

  11. 4 POINTS INSIDE CIRCLE • Four points 1,2,3,4 inside circle (|z|=R) • 4 point-triples on circle • P1 (u12) (u13) (u14) • P2 (u21) (u23) (u24) • P3 (u31) (u32) (u34) • P4 (u41) (u42) (u43) • point-tripleu12,u13,u14 defines cubic(polynomial) • p1:= (Z-u12)*(Z-u13)*(Z-u14) • =1*Z^3 -(u12-u13-u13)*Z^2+(u12*u13+ u12*u14+ u13*u14)*Z– u12*u13*u14 • 4 point-triples ---> 4 cubics • P1, P2, P3 ,P4 ---> { p1, p2, p3, p4}

  12. NORMALIZED 4-points DETERMINANT D4 4-by-4 determinant of coefficient matrix of polynomials : ( 1 -u12-u13-u13 u12*u13+ u12*u14+ u13*u14 – u12*u13*u14) |M4| =det( 1 -u21-u23-u23 u21*u23 +u21*u24+u23*u24 – u21*u23*u24) ( 1 -u31-u32-u34 u31*u32 +u31*u34+u32*u34 – u31*u32*u34) ( 1 -u41-u42-u43 u41*u42 +u41*u43+u42*u43 – u41*u42*u43) Det(M4) D4:= ------------------------------------------------------------------------------------ (u12-u21)*(u13-u31)*(u14-u41)*(u23-u32)*(u24-u42)*(u34-u43) CONJECTURES : C1(Atiyah): D4 ≠0 (<--> p1, p2, p3, p4 lin. indep.) C2(Atiyah-Sutcliffe): D4 R 1 C3(Atiyah-Sutcliffe): |D4|^2 R D3(1,2,3)*D3(1,2,4)*D3(1,3,4)*D3(2,3,4)

  13. Eastwood-Norbury formulas for euclidean D4 In 2001 EASTWOOD -NORBURY, by tricky use of MAPLE ( n=4 points in E^3) : ----------------------------------------------------------Re(D4)=64abca’b’c’ - 4*d3(a*a’,b*b’,c*c’) + Σ*+ 288*Vol^2 -------------------------------------- Σ*:= a’[(b’+c’)^2-a^2)]d3(a,b,c)+...(11 terms) Recall: d3(a,b,c):=(-a+b+c)*(a-b+c)*(a+b-c) D4= D4 /64abca’b’c’ =>eucl. C1, => “almost”(=60/64 of) C2

  14. New proof of the Eastwood-Norbury formula

  15. Geometric interpretation of the "nonplanar"part in Eastwood-Norbury formula

  16. Remarks on Eastwood-Norbury REMARK1: With Urbiha (2006) many cases of euclidean C1-C3 (50 pages manuscript). Euclidean Atiyah_Sutcliffe Conjecture 3 is a “huge” inequality with 4500 terms of degree 12 in six variables (=distances). In 2008 we have discovered: TRIGONOMETRIC (euclidean) Eastwood_Norbury formula: 16*Re(D4):=(1+C3_12+C2_34)*(1+C1_24+C4_13) +(1+C2_13+C3_24)*(1+C4_12+C1_34) +(1+C3_12+C1_34)*(1+C2_14+C4_23) +(1+C1_23+C3_14)*(1+C2_34+C4_12) +(1+C2_13+C1_24)*(1+C3_14+C4_23) + (1+C1_23+C2_14)*(1+C3_24+C4_13) + 2*(C14_23*C13_24 - C14_23*C12_34 +C13_24*C12_34) + 72*normalized_VOLUME^2. Here: Ci_jk:=cos(ij,ik)and Cij,kl:=cos(ij,kl). OPEN PROBLEMS: HYPERBOLIC(Euclidean) version of Eastwood-Norbury formula for n R4 (n R5) points in terms of distances, or in terms of angles.

  17. TRIGONOMETRIC (hyperbolic-planar case) Eastwood_Norbury formula: 16*Re(D4_hyp):= (1+C3_12+C2_34)*(1+C1_24+C4_13) +(1+C2_13+C3_24)*(1+C4_12+C1_34) +(1+C3_12+C1_34)*(1+C2_14+C4_23) +(1+C1_23+C3_14)*(1+C2_34+C4_12) +(1+C2_13+C1_24)*(1+C3_14+C4_23) +(1+C1_23+C2_14)*(1+C3_24+C4_13) + 2*(C14_23*C13_24 - C14_23*C12_34 +C13_24*C12_34) +(Φ1+ Φ2+ Φ3+ Φ4)/4 +( Φ12_13_24*c14,23+...)(12 terms) +1/2*sqrt(Φ1* Φ2* Φ3* Φ4) Here: Cij,kl:=cos(ij,kl)=2*cij_kl-1 cij_kl:=(u_ij-u_lk)*(u_kl-u_ji)/(u_ij-u_ji)*(u_kl-u_lk) (“ Cross ratio”)

  18. EUCLIDEAN ATIYAH-SUTCLIFFE CONJECTURES VIA POSITIVE PARAMETRIZATION OF DISTANCES FOR ANY 4 POINTS (IN R^3) • By using our positive parametrization we prove the strongest Atiyah- Sutcliffe conjecture C3 for arbitrary 4 points in 3-dim Eucl. space. It is remarkable that the “huge” 4500-term polynomial (in r12,r13,r14,r23,r24,r34) |Re(D4)|^2 - D3(1,2,3)*D3(1,2,4)*D3(1,3,4)*D3(2,3,4) as a polynomial in t1,t2,t3,t4,a12,b12 has all coefficients nonnegative.

  19. Atiyah – Sutcliffe 4 point determinant

  20. Verification of 4 point conjecture of Svrtan – Urbiha (→ Atiyah – Sutcliffe C3)

  21. NEW DEVELOPMENTS • In 2011 M.Mazur and B.V.Petrenko restated the original Eastwood Norbury formula in trigonometric form which besides face angles of a tetrahedron uses also angles of the so called Crelle triangle(associated to the tetrahedron). Our formula in [5] does not involve Crelles angles, but uses “skew” angles . • C2 for convex (planar) quadrilaterals and • C3 for cyclic quadrilaterals (we have proved it already in [5]) and • stated 3 conjectures which are consequences of some of our conjectures in [5] .(Hence we have a proof of all 3)

  22. POSITIVE PARAMETRIZATIONS FOR DISTANCES BETWEEN 6 POINTS

  23. RELATIONS AND BASIC DISTANCES FOR 6 POINTS

  24. ĐOKOVIĆ’S RESULTS AND GENERALIZATIONS • In 2002. Đoković verified C1 for • almost collinear configurations and configurations with dihedral symmetry. • In 2006 (I.Urbiha ,D.S) have: (i) extended this to a variety of conjectures (with parameters) including Schur positivity conjectures for some symmetric functions , (ii) proved a Đoković’s conjectural strengthening of C2 for dihedral configurations and (iii) proved C3 for 9 points on a line and 1 outside, by computer trickery. • Recently Mazur and Petrenko (2011) proved C2 for regular polygons by first establishing an amazing result : lim(ln(D_n)/n^2) = 7*ζ (3)/2*π^2-ln(2)/2 ( = 0.007970... )

  25. Remark • It turned out later that some of our generalizations are related to hyperbolic version for almost collinear configurations (with only 1 point aside a line). • Other generalizations are related to some (multi)-Schur symmetric function positivity.

  26. References • [1] Atiyah M, Sutcliffe P, The Geometry of Point Particles. arXiv: hep-th/0105179 (32 pages). Proc.R.Soc.Lond. A (2002) 458, 1089-115. • [2] Atiyah M, Sutcliffe P, Polyhedra in Physics, Chemistry and Geometry, arXiv: math-ph/03030701 (22 pages), “Milan J.Math.” 71:33-58 (2003) • [3]Eastwood M., Norbury P. A proof of Atiyah’s conjecture on configurations of four points in Euclidean three space, Geometry and Topology 5(2001) 885-893. • [4]. Svrtan D, Urbiha I, Atiyah-Sutcliffe Conjectures for almost Collinear Configurations and Some New Conjectures for Symmetric Functions, arXiv: math/0406386 (23 pages). • [5]. Svrtan D, Urbiha I. ,Verification and Strengthening of the Atiyah-Sutcliffe Conjectures for Several Types of Configurations, arXiv: math/0609174 (49 pages). • [6]. Atiyah M. An Unsolved Problem in Elementary Geometry , www.math.missouri.edu/archive/Miller-Lectures/atiyah/atiyah.html. • [7]. Atiyah M. An Unsolved Problem in Elementary Euclidean Geometry , http//c2.glocos.org/index.php/pedronunes/atiyah-uminho • [8] M.Mazur and B.V.Petrenko :On the conjectures of Atiyah and Sutcliffe arXiv:1102.4662v1 • [9]Atiyah M. Edinburgh Lectures on Geometry,Analysis and Physics,arXiv:1009.4827v1.

  27. Thank you very much for your attention.

More Related