270 likes | 284 Views
H = ½ ω (p 2 + q 2 ). The Harmonic Oscillator QM. Recap of the Rotational and Vibrational Energy Level Expressions for a Rigid Diatomic Molecule Vibrating with Simple Harmonic Motion. Recap Rot & Vib Energy Level. y = ax 2. The Quadratic Curve. Harmonic Oscillator.
E N D
H = ½ω(p2 + q2) The Harmonic Oscillator QM
Recap of the Rotational and Vibrational Energy Level Expressions for a Rigid Diatomic Molecule Vibrating with Simple Harmonic Motion Recap Rot & Vib Energy Level
y = ax2 The Quadratic Curve
A Classical Description E = T + V E = ½mv2 + ½kx2 B QM description - the Hamiltonian H v = E(v) v C Solve the Hamiltonian - Energy Levels G(v) = ω(v+ ½) (cm-1) D Selection Rules - Allowed Transitions v =±1 E Transition Frequencies > G = ω F Intensities - THE SPECTRUM J Analysis - Pattern recognition; assign quantum numbers H Experimental Details - spectrometers, lasers I More Advanced Details: anharmonicity J Information: potential, force constants, group identification Harry Kroto 2004
F = -kx Hooke
E= i Ei Born-Oppenheimer Theory
Vibration Rotation Spectroscopy Harry Kroto 2004