1 / 13

Logarithms

Logarithms. By: Lulu Huang, Alison Li,Gladi Pang Period 4. Product Property :    log b XY  =   log b X  +  log b Y Quotient Property :    log b X   =  log b X  -  log b Y                                     Y Power property :       log b X y  =    y logbX. 8-4 Properties of Logarithms.

Download Presentation

Logarithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logarithms By: Lulu Huang, Alison Li,Gladi Pang Period 4

  2. Product Property:    logbXY  =   logbX  +  logbY Quotient Property :   logbX   =  logbX  -  logbY                                    Y Power property:       logbXy  =   ylogbX 8-4 Properties of Logarithms

  3. 8-4  Identifying Properties   • Example 1:log5  +   log6  =  log 30        • product property • Example 2: log55  +  log520  -  log 54  =   log525     • product and quotient property

  4. Example 1: log44    +   log432 = log4 (4 x 32) = log4132 Example 2:log 7X   +   log7Y   -  log 7Z = log 7  (X x Y)          Z = log 7  XY        Z 8-4 Simplifying Logarithms

  5. Example 1:log5XY = log5X  +  log 5Y Example 2:log3m4n-2 = log3  + logm4 +logn-2 = log3 +  4logm  + -2logn 8-4 Expanding Logarithms

  6. Example 1:72X  =  25 log72X = log25 2Xlog7  =   log25 log7            log 7 2X  =  1.65422            2 X  =  0.8271 Example 2:202X+1  =  260 log202X+1  =  log260 2X+1log20  = log260log 20             log 20 2X+1  =   1.8562   -1         -1 2X  =   0.85622            2 X =  0.4281 8-5 Solving Exponential Equation

  7. Change Of Base Formula:logaN  = log Nlog a Example 1: log333 = log33log 3Example 2:log5135 = log135log5 8-5 Using Change Of Base Formula

  8. Example 1: 2X =  5 log22X = log25 Xlog22 = log25 Xlog2   =    log5log2            log2 X =  2.322 Example 2:73X+4 =  79 log773X+4   =   log779 3X + 4 log7  =     log79log7          log7 3X + 4 =  2.2455    -4        -4 3X  =  -1.75453          3 x = -0.584 8-5 Solving Exponential Equations by Changing Base

  9. Example 1: log2X =  5 10log 2X =  105 2X = 105 2X = 10000 2         2 X =  50000 Example 2: 2log X = 2 log X2  =  2 10log X2 = 102 X2 = 102 X  = 1002 X  = 10000 8-5 Solving a Logarithmic Equations 2 X2 1002 =

  10. Example 1:log X - log 3 =  3 log X    = 3  3 10logX  = 103          3    3 x X      = 1000  (3)3 X = 3000 Example 2: log2 X - log2 6 + log2 2 = 3 log 22X   = 3        6 2 log22X  =  23             6 6 x 2X  = 8 (6)6 2X = 482      2 X =  24 8-5 Using Logarithmic Properties to Solve Equation

  11. Example 1: 3 ln 5 ln 53 = ln125 =  4.83 Example 2:ln a - 2 ln b  +  2 ln c = ln a - ln b2 + ln c2 = ln a x c2        b2 = ln ac2       b2 8-6 Simplifying Natural Logarithms

  12. Example 1: ln 3X = 6 e ln 3X = e6 3X  =  403.433         3 X = 134.48 Example 2:1.1 + ln 2X = 12-1.1               - 1.1 ln 2X  =  10.9 e ln 2X = e10.9 2X =  54176.3642        2 X =  27088.182 8-6 Solving Natural Logarithmic Equations

  13. Example 1:eX = 5 ln e X= ln 5 X =  1.609 Example 2:2e2x  - 7 = 53+7    +7 2e2X  = 602           2 e2X   =   30 ln e2x  = ln 30 2X  = 3.40122        2 X = 1.7006 8-6 Solving Exponential Equations

More Related