560 likes | 666 Views
Hikorski Triples. By Jonny Griffiths UEA, May 2010. The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, like the colors or the words must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world
E N D
Hikorski Triples By Jonny Griffiths UEA, May 2010
The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, like the colors or the words must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world for ugly mathematics. G. H. Hardy (1877 - 1947), A Mathematician's Apology
What does mean to you?
GCSE Resit Worksheet, 2002 How many different equations can you make by putting the numbers into the circles? Solve them!
Suppose a, b, c, and d are in the bag. If ax + b = cx + d, then the solution to this equation is x = There are 24 possible equations, but they occur in pairs, for example:ax + b = cx + d and cx + d = ax + b will have the same solution. So there are a maximum of twelve distinct solutions.
This maximum is possible: for example, if 7, -2, 3 and 4 are in the bag, then the solutions are:
If x is a solution, then –x, 1/x and -1/x will also be solutions. ax + b = cx + d a + b(1/x) = c + d(1/x) c(-x) + b = a(-x) + d a + d(-1/x) = c + b(-1/x)
The solutions in general will be:{p, -p, 1/p, -1/p}{q, -q, 1/q, -1/q}and {r, -r, 1/r, -1/r}where p, q and r are all ≥ 1
It is possible for p, q and r to be positive integers. For example, 1, 2, 3 and 8 in the bag give (p, q, r) = (7, 5, 3). In this case, they form a Hikorski Triple.
Are (7, 5, 3) linked in any way? Will this always work?
a, b, c, d in the bag gives the same as b, c, d, a in the bag, gives the same as … Permutation Law
a, b, c, d in the bag gives the same as a + k, b + k, c + k, d + kin the bag. Translation Law
a, b, c, d in the bag gives the same as ka, kb, kc, kdin the bag. Dilation Law
So we can start with 0, 1, a and b (a, b rational numbers with 0 < 1 < a < b)in the bag without loss of generality.
a, b, c, d in the bag gives the same as -a, -b, -c, -din the bag. Reflection Law
Suppose we have 0, 1, a, bin the bag, with 0 < 1 < a < band with b – a < 1 then this gives the same as –b, -a, -1, 0 which gives the same as 0, b - a, b - 1, b which gives the same as 0, 1, (b -1)/(b - a), b/(b - a) Now b/(b - a) - (b -1)/(b - a) = 1/(b - a) > 1
If the four numbers in the bag are given as {0, 1, a, b} with 1< a < b and b – a > 1, then we can say the bag is in Standard Form. So our four-numbers-in-a-bag situation obeys four laws: the Permutation Law, the Translation Law, the Reflection Law and the Dilation Law.
Given a bag of numbers in Standard Form,where might the whole numbers for our HT come from?
Pythagorean Triples(√(x2+y2), x, y)Hikorski Triples(p, q, (pq+1)/(p+q))
How many HTs are there? Plenty...
What do mean to you?
Adding Speeds Relativistically Suppose we say the speed of light is 1. How do we add two speeds?
Try the recurrence relation:x, y, (xy+1)/(x+y)…Not much to report... Try the recurrence relation:x, y, (x+y)/(xy+1)…still nothing to report...
But try the recurrence relation:x, y, -(xy+1)/(x+y)… Periodic, period 3
Now try the recurrence relation:x, y, -(x+y)/(xy+1)… Also periodic, period 3 Are both periodic, period 6
Parametrisation for Pythagorean Triples:(r(p2+q2), 2rpq, r(p2-q2)) For Hikorski Triples?
Takes six values as A, B and C permute: Form a group isomorphic to S3 under composition
So the cross-ratio and these cross-ratio-type functions all obey the four laws: the Permutation Law, the Translation Law, the Reflection Law and the Dilation Law.
Elliptic Curve Connection Rewrite this as Y2 = X(X -1)(X - D) Transformation to be used is: Y = ky, X = (x-a)/(b-a), or... D runs through the values
So we have six isomorphic elliptic curves. The j-invariant for each will be the same.
has integral points (5,3), (3,-2), (-2,5) and (3,5), (-2,3), (5,-2) and (30,1), (1,-1), (-1,30) and (1,30), (30,-1), (-1,1) If the uniqueness conjecture is true...