140 likes | 271 Views
MystiQ. The HusQies*. *Nilesh Dalvi, Brian Harris, Chris Re, Dan Suciu University of Washington. Outline. Overview Demo / discussions Conclusions. MystiQ. General purpose probabilistic database system Motivation: manage imprecisions in data. What MystiQ Does.
E N D
MystiQ The HusQies* *Nilesh Dalvi, Brian Harris, Chris Re, Dan Suciu University of Washington
Outline • Overview • Demo / discussions • Conclusions
MystiQ • General purpose probabilistic database system • Motivation: manage imprecisions in data
What MystiQ Does Tables stored in relational database • Tables Events (= Probabilistic tables) Expressive probabilistic model • Maybe/Or tuples • Views over events • Confidences for views
What MystiQ Does • Query semantics: • SQL: joins, distinct, aggregates/group-by • Point probabilities • Top-k answers, guaranteed ranking • Query evaluation • Safe plans • Monte Carlo simulation (Luby-Karp)
What MystiQ Does Not • No syntax for popular probabilistic models • BNs, PRMs, rules with confidences • Can be expressed but indirectly • No lineage • No probabilities on continuous values
Using MystiQ • Store data in RDBMS (demo: postgres) • Write a configuration file • Run SQL queries on MystiQ
Views later • Standard:Tables Tables ( Events ) • Probabilistic:Events Events
A BN in MystiQ Color Shape Weight
Applying BN to a Table Product(prod,price,color,shape,prob) ProductEvent(prod,price,color,shape)
Applications of ProbDB ? • Fuzzy object matching: IMDB + AMZN • Information extraction • What else ???
Development • Developed under a TGIF grant • Free license (on request) for research institutions
Current/Future Work • Constraint, Data mappings • Theory of conjunctive queries on probdb • Cleaning of sensor data (w/ Balazinska)