350 likes | 495 Views
Syntax-directed Transformations of XML Streams. Stefanie Scherzinger joint work with Alfons Kemper . XML Stream Processing. <bib> <book> <year> 1999 </year> <title> Data on the Web </title> <author> Serge Abiteboul </author> <author> Peter Buneman </author>
E N D
Syntax-directed Transformationsof XML Streams Stefanie Scherzingerjoint work with Alfons Kemper
XML Stream Processing <bib> <book> <year>1999</year> <title>Data on the Web</title> <author>Serge Abiteboul</author> <author>Peter Buneman</author> <author>Dan Suciu</author> </book> ... 1. Very long XML documents. 2. Applications need to be completely main-memory based. <!ELEMENT bib (book)*><!ELEMENT book (year,title,author,author*) <!ELEMENT year #PCDATA> <!ELEMENT title #PCDATA> <!ELEMENT author #PCDATA> 3. Schema information is available.
XML Query Languages XPath <?xml version="1.0" encoding="ISO-8859-1"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <books> <xsl:for-each select="bib/book"> <book> <xsl:copy-of select="title"/> <xsl:copy-of select="author"/> </book> </xsl:for-each> </books> </xsl:template> </xsl:stylesheet> //book[year=2003]/title <books> { for $x in input()//book where $x/year=2003 return <book> {$x/title} <authors> {$x/author} </authors> </book> } </books> Schema knowledgenecessary to specify query! XQuery XSLT
TransformX Attribute Grammars • (Suitable) extended regular tree grammar, e.g. DTD • Add attribution functions (Java code) • Parser generator produces Java code: • Validates the input • Evaluates the attribution functions • Compile and execute
Extended Regular Tree Grammars Grammar G = (Nt,T,P,bib) Nonterminals Nt = {bib,pub,year,title,author} Terminals T = {bib,book,year,title,author,PCDATA} bib ::= bib(pub* ) pub ::= book(year.title.author.author* )pub ::= article( year.title.author.author*) year ::= year( PCDATA ) title ::= title( PCDATA ) author ::= author( PCDATA ) L(G)
Example: Task input: output: <books> <book> <id>1</id> <title>Data on the Web</title> <year>1999</year> <author>Serge Abiteboul</author> <author>Peter Buneman</author> <author>Dan Suciu</author> </book> ... <bib> <book> <year>1999</year> < title>Data on the Web</title> <author>Serge Abiteboul</author> <author>Peter Buneman</author> <author>Dan Suciu</author> </book> ... • Re-label root to “books” • Retrieve all books, but not articles • For each book, output • numerical identifier • title, year, and authors
Example: TransformX Attribute Grammar definitionsection rulessection attributionfunctions class-membersection
Grammar provides context information potential for optimization
Extended Regular Tree Grammars Grammar G = (Nt,T,P,bib) Nonterminals Nt = {bib,pub,year,title,author} Terminals T = {bib,book,year,title,author,PCDATA} bib ::= bib(pub* ) pub ::= book( year.title.author.author* )pub ::= article( year.title.author.author*) year ::= year( PCDATA ) title ::= title( PCDATA ) author ::= author( PCDATA ) L(G) Abbreviation: (pub*)=(book article)*
ERTG where rhs is or(regular expression) is one-unambiguous: a*.a a.a* a.b* a.c* a.(b* c*) deterministic parsing with one token lookahead parse tree can be unambiguously constructed with lookahead of one token: DTDs are a dialect of TDLL(1) grammars Lee, Mani, Murata, 2000. TDLL(1) Grammars
Strong One-Unambiguity stronglyone-unambiguous Koch, Scherzinger, 2003.
Syntax in the Abstract Attributed TDLL(1) grammar, i.e., each production • is of one of the four forms:n :: = t() n :: = {f$[} t() n :: = t() {f$]} n :: = {f$[} t() {f$]} • if is an attributed regular expression, then for the regular expression without the attribution functions: () must be strongly one-unambiguous
bib book . . . year title year * author title author author author author author Attributed Parse Tree
bib book . . . year title year * author title author author author author author Attributed Parse Tree
bib book . . . year title year * author title author author author author author L-attributed Grammars
bib book . . . year title year * author title author author author author author
bib book . . . year title year * author title author author author author author
bib book . . . year title year * author title author author author author author
bib book . . . year title year * author title author author author author author
bib book . . . year title year * author title author author author author author
Class Members accessible from withinattribution functions
TransformXAttributes transfer informationbetween attribution functions
The TransformX Parser Generator Translation to Java source code: • The validator module • validate input • output attribution functions as encounteredin attributed extended parse tree generated in O(|G|3) • The evaluator module • evaluate attribution functions • store attributes on stack • generated in O(1)
Experiments Prototype:C++ implementation,generates Java code Experiments: • Validate the input • Output the input • Evaluate example Data: Books and articles, datasets 31-122 MB Memory consumption: 12 MB
Conclusion & Summary • TransformX attribute grammars specify many queries conveniently often more convenient than SAX grammar may reveal potential for optimization • TransformX parser generatorlittle runtime-overhead (validation+attributes) • Prototype implementation
XML and Attribute Grammars M. Benedikt, C.Y. Chang, W. Fan, J. Freire, and R. Rastogi. “Capturing both Types and Constraints in Data Integration“. SIGMOD’03. M. Benedikt, C.Y. Chan, W. Fan, R. Rastogi, S. Zhen, and A. Zhou. “DTD-Directed Publishing with Attribute Translation Grammars“. VLDB’02. C. Koch and S. Scherzinger:“Attribute Grammars for Scalable Query Processing on XML Streams“, DBPL’03. F. Neven and J. van de Bussche. “Expressiveness of Structured Document Query Languages Based on Attribute Grammars“. JACM, Jan. 2002. S. Nishimura and K. Nakano. “XML Stream Transformer Generation Through Program Composition and Dependency Analysis“. Science of Computer Programming, 2005. One-unambiguous Regular Languages Brüggemann-Klein and D. Wood. “One-Unambiguous Regular Languages“. Information and Computation, 1998. Strong One-unambiguity C. Koch and S. Scherzinger:“Attribute Grammars for Scalable Query Processing on XML Streams“, DBPL’03. TDLL(1) Grammars D. Lee, M. Mani, and M. Murata. “Reasoning about XML Schema Languages using Formal Language Theory.“ Technical Report RJ 10197 Log 95071, IBM Research, Nov. 2000. Lex&Yacc J. R. Levine, T. Mason, D. Brown. “lex&yacc“. O‘Reilly, 1992. Selected Related Work