140 likes | 289 Views
Aula Teórica 12. Equação de Bernoulli. Bernoulli’s Equation. Let us consider a Stream - pipe such as indicated in the figure and an ideal fluid (without viscosity) . Using the mass and momentum conservation principles, obtain an equation relating the energy in two sections.
E N D
AulaTeórica 12 Equação de Bernoulli
Bernoulli’s Equation • Let us consider a Stream - pipe such as indicated in the figure and an ideal fluid (without viscosity) . • Using the mass and momentum conservation principles, • obtain an equation relating the energy in two sections.
Mass conservation • Being a stream pipe there is flow on the tops only.
Performing a mass balance Below we will use:
Considerations • The Mechanical energy remains constant along a streamline in steady, incompressible, frictionless flow. • Pressure is a form of energy: is the energy (work) necessary for moving a unit of volume from a region with null pressure into a region of pressure P. • Total pressure: • Piezometric Pressure:
Chaminé • Considere uma chaminé que escoa um gás cuja massa volúmica é 1.1 kgm-3 relacione a velocidade à saída com a altura da chaminé e com a massa volúmica do ar exterior. A equação de Bernoulli só é aplicável se as propriedades do fluido forem uniformes e por isso pode ser aplicada no interior da chaminé ou no exterior, mas não para relacionar pontos do interior com pontos do exterior. A diferença de pressões entre a entrada e a saída da chaminé é determinada pelas condições exteriores:
Considere o escoamento num tubo de Ventouri cuja área de entrada (e saída) é de 5 cm2 e na garganta é 2 cm. Se o fluido que circula no Ventouri for ar e h for 10 cm de água, determine o caudal que circula no Ventouri. h
The Energy Equation • Let us consider a control volume, and apply the Reynolds theorem to the Energy conservation principle. • If we assume • uniform properties at the inlet and outlet, • Steady conditions and incompressible and adiabatic flow. • We will obtain a generalised form of the Bernoulli’s equation.