1 / 5

TITRATION

TITRATION. Titration of a strong acid with a strong base ENDPOINT = POINT OF NEUTRALIZATION = EQUIVALENCE POINT

telyn
Download Presentation

TITRATION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TITRATION Titration of a strong acid with a strong base ENDPOINT = POINT OF NEUTRALIZATION = EQUIVALENCE POINT At the end point for the titration of a strong acid with a strong base, the moles of acid (H+) equals the moles of base (OH-) to produce the neutral species water (H2O). If the mole ratio in the balanced chemical equation is 1:1 then the following equation can be used. MOLES OF ACID = MOLES OF BASE nacid = nbase Since M=n/V MAVA = MBVB

  2. TITRATION MAVA = MBVB 1. Suppose 75.00 mL of hydrochloric acid was required to neutralize 22.50 mLof 0.52 M NaOH. What is the molarity of the acid? HCl + NaOH  H2O + NaCl Ma Va = Mb Vb rearranges to Ma = Mb Vb / Va so Ma = (0.52 M) (22.50 mL) / (75.00 mL) = 0.16 M Now you try: 2. If 37.12 mL of 0.843 M HNO3 neutralized 40.50 mL of KOH, what is the molarity of the base? Mb = 0.773 mol/L

  3. TITRATION Titration of a strong acid with a strong base ENDPOINT = POINT OF NEUTRALIZATION = EQUIVALENCE POINT At the end point for the titration of a strong acid with a strong base, the moles of acid (H+) equals the moles of base (OH-) to produce the neutral species water (H2O). If the mole ratio in the balanced chemical equation is NOT 1:1 then you must rely on the mole relationship and handle the problem like any other stoichiometry problem. MOLES OF ACID = MOLES OF BASE nacid = nbase

  4. TITRATION 1. If 37.12 mL of 0.543 M LiOH neutralized 40.50 mL of H2SO4, what is the molarity of the acid? 2 LiOH + H2SO4 Li2SO4 + 2 H2O First calculate the moles of base: 0.03712 L LiOH (0.543 mol/1 L) = 0.0202 mol LiOH Next calculate the moles of acid: 0.0202 mol LiOH (1 mol H2SO4 / 2 mol LiOH)= 0.0101 mol H2SO4 Last calculate the Molarity: Ma = n/V = 0.010 mol H2SO4 / 0.4050 L = 0.248 M 2. If 20.42 mL of Ba(OH)2 solution was used to titrate29.26 mL of 0.430 M HCl, what is the molarity of the barium hydroxide solution? Mb = 0.260 mol/L

  5. PRACTICE PROBLEMS 10.8 mL 1. How many milliliters of 1.25 M LiOH must be added to neutralize 34.7 mL of 0.389 M HNO3? 2. How many mL of 0.998 M H2SO4 must be added to neutralize 47.9 mL of 1.233 M KOH? 29.6 mL

More Related