1 / 68

Discovering the Universe Ninth Edition

Neil F. Comins • William J. Kaufmann III. Discovering the Universe Ninth Edition. CHAPTER 12 The Lives of the Stars from Birth Through Middle Age. WHAT DO YOU THINK?. How do stars form? Are stars still forming today? If so, where?

tender
Download Presentation

Discovering the Universe Ninth Edition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neil F. Comins • William J. Kaufmann III Discovering the Universe Ninth Edition CHAPTER 12 The Lives of the Stars from Birth Through Middle Age

  2. WHAT DO YOU THINK? • How do stars form? • Are stars still forming today? If so, where? • Do more massive stars shine longer than less massive ones? What is your reasoning? • When stars like the Sun stop fusing hydrogen and helium in their cores, do the stars get smaller or larger?

  3. In this chapter you will discover… • how stars form • what a stellar “nursery” looks like • how astronomers use the physical properties of stars to learn about stellar evolution • the remarkable transformations of older stars into giants • how the Hertzsprung-Russell (H-R) diagram is your guide to the stellar life cycle • how pairs of orbiting stars change each other

  4. Everything Ages (a) 1935 (b) 1994

  5. Stars and the Interstellar Medium This open cluster, called the Pleiades, can easily be seen with the naked eye in the constellation Taurus (the Bull). The blue glow surrounding the stars of the Pleiades is a reflection nebula created as some of the stars’ radiation scatters off preexisting dust grains in their vicinity (a reflection nebula).

  6. Stars and the Interstellar Medium The same region of the sky in a false-color infrared . Image taken by the Spitzer Space Telescope. Gases are seen here to exist in more areas than can be detected in visible light.

  7. We see an emission nebula via: A. reflected blue light from a nearby star or stars. B. blue light emitted by hot (excited) hydrogen atoms. C. red light emitted by hot (excited) hydrogen atoms. D. reflected red light from a nearby star.

  8. Stars and the Interstellar Medium H-R diagram for 500 stars in the Pleiades . Most of the cool, low-mass stars have arrived at the main sequence, indicating that hydrogen fusion has begun in their core. The cluster has a diameter of about 5 ly, is about 100 million years old.

  9. A Connection to Interstellar Space The charred layer created by overcooking this beef contains compounds of carbon and hydrogen, called polycyclic aromatic hydrocarbons. These molecules are also found in interstellar clouds.

  10. Interstellar Reddening Dust in interstellar space scatters more short-wavelength (blue) light passing through it than longer-wavelength colors. Therefore, stars and other objects seen through interstellar clouds appear redder than they would otherwise.

  11. Interstellar Reddening Light from these two nebulae pass through different amounts of interstellar dust and therefore they a have different colors. Because NGC 3603 is farther away, its color is completely dominated by the Hα line, while NGC 3576 has some Hβ.

  12. A Dark Nebula The dark nebula Barnard 86 is located in Sagittarius. It is visible in this photograph simply because it blocks out light from the stars beyond it. The bluish stars to the left of the dark nebula are members of a star cluster called NGC 6520.

  13. A Gas- and Dust-Rich Region of Orion Giant molecular clouds in Orion and Monoceros as seen in the radio part of the spectrum. The intensity of carbon monoxide (CO) emission is displayed by colors in the order of the rainbow, from violet for the weakest to red for the strongest. Black indicates no detectable emission.

  14. A Gas- and Dust-Rich Region of Orion A variety of nebulae appear in the sky around Alnitak, the easternmost star in the belt of Orion. To the left of Alnitak is a bright, red emission nebula called NGC 2024. The glowing gases in emission nebulae are excited by UV radiation from young, massive stars. Dust grains obscure part of NGC 2024, giving the appearance of black streaks, while the distinctively shaped dust cloud, called the Horsehead Nebula, blocks the light from the background nebula IC 434. The Horsehead Nebula is part of a larger complex of dark interstellar matter, seen in the lower left of this image. Above and to the left of the Horsehead Nebula is the reflection nebula NGC 2023, whose dust grains scatter blue light from stars between us and it more effectively than any other color. All of this nebulosity lies about 1600ly from Earth, while the star Alnitak is only 815 ly away from us.

  15. A Supernova Remnant (a) X-ray image of the Cygnus Loop, the remnant of a supernova that occurred nearly 20,000 years ago. The expanding spherical shell of gas now has a diameter of about 120 ly. (b) This visible-light Hubble Space Telescope image of part of the Cygnus Loop shows emission from different atoms false-color-coded with blue from oxygen, red from sulfur, and green from hydrogen.

  16. Core of the Rosette Nebula – Sweeping Dust

  17. Protostar in a Bok Globule (a) This visible-light image shows a small dark nebula (equivalently, Bok globule) . (b)When viewed in the infrared, a protostar is visible within the nebula.

  18. Protostars are not seen in visible light telescopes because: A. they don’t emit any radiation B. they are surrounded by clouds of gas and dust C. they only emit infrared radiation D. they are all moving away from Earth so fast that their visible light is Doppler shifted into the infrared

  19. A Cluster of Protostars – Same Technique

  20. Pre–Main-Sequence Stars Seen in infrared, the two large bright objects in the center of this image are pre–main-sequence stars. They have recently shed their cocoons of gas and dust but still have strong stellar winds that create their irregular shapes. The two stars are an optical double; that is, they are not orbiting each other.

  21. Summary so far • Nebulae containing gas and dust are plentiful • Protostars and stars are seen in such nebulae • Star formation is ongoing

  22. A Brown Dwarf - a “Failed Star” Gliese 229B was the first confirmed brown dwarf ever observed. With a surface temperature of about 1000 K, its spectrum is similar to that of Jupiter. Gliese 229B is in orbit around its companion Gliese 229A on the left. The two bodies are separated by about 43 AU. Gliese 229B has from 20 to 50 times the mass of Jupiter, but the brown dwarf is compressed to the same size as Jupiter. The spike is not real – it stems from an electronics overload .

  23. A brown dwarf is best described as: A. a low mass object that doesn’t fuse in its core B. a low mass main sequence star C. a high mass main sequence star D. an object of dust too small to classify as a planet

  24. Pre–Main-Sequence Evolutionary Tracks This H-R diagram shows evolutionary tracks based on models of seven stars having different masses. The dashed lines indicate the stage reached after the indicated number of years of evolution. The birth line, shown in blue, is the location where each protostar stops accreting matter and becomes a pre–main-sequence star..

  25. A Stellar Nursery Full of Brown Dwarfs Besides containing more than 100 young stars, the rho Ophiuchi cloud, located 540 ly away in the constellation Ophiuchus, contains at least 30 brown dwarfs. By studying these objects, astronomers expect to learn more about early stellar evolution. This infrared image is color coded, with red indicating 7.7-µm radiation and blue indicating 14.5-µm radiation.

  26. Mass Loss from a Supermassive Star Within the Quintuplet Cluster is one of the brightest known stars, called the Pistol. Astronomers calculate that the Pistol formed nearly 3 million years ago and originally had 100–200 solar masses. The structure of the gas cloud suggests the star ejected the gas we see in two episodes, 6000 and 4000 years ago. The gas from any previous ejections is so thinly spread now that we cannot see it. The nebula shown in the inset is more than 4 ly (1.25 pc) across—it would stretch from the Sun nearly to the closest star, Proxima Centauri. The image of the Quintuplet Cluster was taken in the infrared. The name Pistol was given to the star based on early, low-resolution radio images of its gas, which initially looked like an old-fashioned pistol aimed to the left near the top of the inset.

  27. Mass Loss from a Supermassive Star The largest, most massive known star, LBV 1806-20, is 5 million times brighter and apparently some 150 times more massive than the Sun. This drawing shows the star’s color and its size compared to the Sun.

  28. An H II Region The Eagle Nebula, M16, surrounds a star cluster. Star formation is presently occurring in M16. Several bright, hot O and B stars are responsible for the ionizing radiation that causes the gases to glow. Inset: Star formation is occurring inside these dark pillars of gas and dust. Intense ultraviolet radiation from existing massive stars off to the right of this image is evaporating the dense cores in the pillars, thereby prematurely terminating star formation there. Newly revealed stars are visible at the tips of the columns.

  29. The Orion Nebula The middle “star” in Orion’s sword is actually the Orion Nebula, part of a huge system of interstellar gas and dust in which new stars are now forming. This nebula’s mass is about 300 solar masses. Left inset: This view at visible wavelengths shows the inner regions of the Orion Nebula. At the lower left are four massive stars, the brightest members of the Trapezium star cluster, which cause the nebula to glow. Right inset: This view shows numerous infrared objects—many of which are stars in the early stages of formation—along with shock waves caused by matter flowing out of protostars faster than the speed of sound waves in the nebula. Shock waves from the Trapezium stars may have helped trigger the formation of the protostars in this view.

  30. The Evolution of an OB Association High-speed particles and ultraviolet radiation from young O and B stars produce a shock wave that compresses gas farther into the molecular cloud, stimulating new star formation deeper in the cloud. Meanwhile, older stars are left behind. Inset: Stars forming around a massive star 2500 ly away in the constellation Monoceros’s Cone Nebula. The stars (small dots on the right side of the inset) arrayed around the bright, massive central star are believed to have formed as a result of the central star compressing surrounding gas with high-speed particles and radiation. The younger stars are just 0.04–0.08 ly from the central star.

  31. Plotting the Ages of Stars This photograph shows a region of ionized hydrogen and the young star cluster NGC2264 in the constellation Monoceros. The red nebulosity is located about 2600 ly from Earth and contains numerous stars that are about to begin hydrogen fusion in their cores.

  32. Plotting the Ages of Stars-Cluster Only 2 Million yr Each dot plotted on this H-R diagram represents a star in NGC 2264 whose luminosity and surface temperature have been measured. Note that most of the cool, low-mass stars have not yet arrived at the main sequence. Calculations of stellar evolution indicate that this star cluster started forming about 2 million years ago.

  33. Why are A-type main sequence stars hotter than G-type main sequence stars? A. A-type stars have cores of metal, whereas G-type stars do not B. A-type stars have more fusion on their surface than G-type stars C. A-type stars have more fusion in their cores than G-type stars D. A-type stars fuse in their cores and near their surfaces, while G-type stars only fuse in their cores.

  34. A Summary of the Star Formation Process

  35. Some Differences From Sun: Fully Convective Star This drawing shows how the helium created in the cores of red dwarfs rises into the outer layers of the star by convection, while the hydrogen from the outer layers descends into the core. This process continues until the entire star is helium.

  36. The star is on the main sequence • It fuses hydrogen to helium, just as our Sun does. (Some stars have a variation.) • It spends 80-90% of its lifetime on main sequence. • It very slowly brightens. • … then life gets exciting

  37. Evolution of Stars Off the Main Sequence (a) Hydrogen fusion occurs in the core of main-sequence stars. (b) When the core is converted into helium, fusion there ceases and then begins in a shell that surrounds the core. The star expands into the giant phase. This newly formed helium sinks into the core, which heats up. (c) Eventually, the core reaches 108 K, whereupon core helium fusion begins. This activity causes the core to expand, slowing the hydrogen shell fusion and thereby forcing the outer layers of the star to contract.

  38. What is Helium Fusion • 4He + 4He + 4He  12C Three Heliums fuse to Carbon • 4He + 12C  16O Some of the C picks up one more He • It takes 3 He’s: two of them won’t create any energy, no matter how you fuse them • It takes a temperature of 100 million K • It begins with a spike for low-mass stars

  39. A Mass-Loss Star A red giant star is shedding its outer layers, thereby creating this reflection nebula, labeled IC 2220 and called Toby Jug, located in the constellation Carina. The star is embedded inside the nebula and is not visible in this image.

  40. Red giants burn helium via nuclear fusion in their core. The ash (end product) of this nuclear fusion is: A. iron. B. hydrogen. C. lithium and carbon. D. carbon and oxygen.

  41. The Sun Today and as a Giant In about 5 billion years, when the Sun expands to become a giant, its diameter will increase a hundredfold from what it is now, while its core becomes more compact. Today, the Sun’s energy is produced in a hydrogen-fusing core whose diameter is about 200,000 km. When the Sun becomes a giant, it will draw its energy from a hydrogen-fusing shell that surrounds a compact helium-rich core. The helium core will have a diameter of only 30,000 km. The Sun’s diameter will be about 100 times larger, and it will be about 2000 times more luminous as a giant than it is today.

  42. Red Giant Stars This composite of visible and infrared images shows red giant stars in the open cluster M50 in the constellation of Monoceros (the Unicorn).

  43. Post–Main-Sequence Evolution The luminosity of the Sun changes as our star evolves. It began as a protostar with decreasing luminosity. On the main sequence today, it gradually brightens. Giant-phase evolution occurs more rapidly, with faster and larger changes of luminosity. Note the change in scale of the horizontal axis scale at 12 billion years.

  44. Post–Main-Sequence Evolution Model-based evolutionary tracks of five stars are shown on this H-R diagram. In the high-mass stars, core helium fusion ignites smoothly where the evolutionary tracks make a sharp turn upward into the giant region of the diagram.

  45. The Instability Strip The instability strip occupies a region between the main sequence and the giant branch on the H-R diagram. A star passing through this region along its evolutionary track becomes unstable and pulsates.

  46. Analogy for Cepheid Variability (a) As pressure builds up in this pot, the force on the lid (analogous to a Cepheid’s outer layers) increases. (b) When the pressure inside the pot is sufficient, it lifts the lid off (expands the star’s outer layers) and thereby allows some of the energy inside to escape. This process cycles (two cycles are shown here), as do the luminosity and temperature of Cepheid stars.

  47. The Period-Luminosity Relation for Cepheids The period of a Cepheid variable is directly related to its average luminosity: The more luminous the Cepheid, the longer its period and the slower its pulsations. Type I Cepheids (δ Cephei stars) are brighter, more massive, and more metal-rich stars than Type II Cepheids. The greater brightness of the Type I Cepheids is a result of their higher mass.

  48. A Globular Cluster This cluster, M10, is about 85 ly across and is located in the constellation Ophiuchus (the Serpent Holder), roughly 16,000 ly from Earth. Most of the stars here are either red giants or blue horizontal-branch stars with both core helium fusion and hydrogen shell fusion.

  49. An H-R Diagram of a Globular Cluster Each dot on this graph represents the absolute magnitude and surface temperature of a star in the globular cluster M55. Note that the upper half of the main sequence is missing. The horizontal-branch stars are stars that recently experienced the helium flash in their cores and now exhibit core helium fusion and hydrogen shell fusion.

  50. Mass, Temperature, Luminosity, and Lifetime • High-mass stars consume their fuel MUCH faster. • The age of a cluster can be determined by examining an H-R diagram of its stars.

More Related