190 likes | 307 Views
マイクロシミュレーションにおける 可変属性セル問題と解法. 東京都市大学 大谷紀子 ( 株 ) ドーコン 杉木 直 Kasetsart Univ. Varameth Vichiensan 東京都市大学 宮本和明. 土地利用マイクロシミュレーション. 土地利用と交通の詳細な変化の記述方法 初期年次のマイクロデータが必要 各世帯の世帯人数,世帯構成員の年齢,性別 etc. 実際のデータの入手は困難 推定データ の作成 IPF 法 (Iterative Proportional Fitting Method). IPF 法. 周辺分布. 属性 2.
E N D
マイクロシミュレーションにおける可変属性セル問題と解法マイクロシミュレーションにおける可変属性セル問題と解法 東京都市大学 大谷紀子 (株)ドーコン 杉木 直 KasetsartUniv.Varameth Vichiensan 東京都市大学 宮本和明
土地利用マイクロシミュレーション • 土地利用と交通の詳細な変化の記述方法 • 初期年次のマイクロデータが必要 各世帯の世帯人数,世帯構成員の年齢,性別 etc. 実際のデータの入手は困難 推定データの作成 IPF法 (Iterative Proportional Fitting Method)
IPF法 周辺分布 属性 2 既定カテゴリ 周辺分布に合致するよう セル値を調整 推定結果は設定条件に依存 国勢調査等より 属性1 周辺分布 セルベース推定手法 クロス分類表
マイクロシミュレーションにおける課題 • セル数 • シミュレーションの所要時間を左右 • 予測結果 • 基準年データに大きく依存 可変領域ユニット問題MAUPと同様 分析ゾーンの違いが大きく影響
セル統合 基本セル集合 属性の統合 有効な予測結果? セル数少?
可変属性セル問題MACP マイクロシミュレーションのための最適化問題 目的は政策の決定 → 出力は政策変数 制約条件 基本セル集合を用いたときと同等の政策決定 (政策変数の分布に有意差がない) 目的関数 クロス分類表のセル数 目的関数の値が最小となる統合セル集合の探索
セル統合の位置づけ 一部のエリア 対象エリア全体 一部のエリア 最適な統合セル集合の探索 フルスケールの推定とシミュレーション
セル統合の処理手順 基本セル集合に基づきIPF法で基準年データ推定 マイクロシミュレーションを複数回実行 統合セル集合生成 統合セル集合に基づきIPF法で基準年データ推定 マイクロシミュレーションを複数回実行 政策変数の分布に関するT検定
MACPにおける計算量 適切な属性の統合? 適切な属性の統合の組合せ? 共生進化の適用 • 属性の統合 • 連続値属性 • 16通り (5カテゴリ) • 512通り(10カテゴリ) • 524,288通り(20カテゴリ) • カテゴリカル属性 • 52通り (5カテゴリ) • 115,975通り(10カテゴリ) • 51,724,158,235,372通り(20カテゴリ)
共生進化 • 遺伝的アルゴリズムの一種 • 最適解探索アルゴリズム • 生物の進化過程を模倣 • 同種個体の協働による目標の達成 • 解を部分解の組合せで表現 • 部分解集団と全体解集団の並行進化 • 多様な解候補からの探索が可能 部分解:属性の統合 全体解:属性の統合の組合せ
部分解集団 全体解集団 処理手順 適応度 開始 全体解: 解としての良さ 部分解: 属する全体解の適応度の最良値 初期集団生成 個体の評価 次世代の生成 G世代? No Yes 全体解集団の最良個体 終了
評価実験 (1) • データ • 道央都市圏パーソントリップ調査データ • 102,739人の個人データから5,000 人分を無作為抽出 • 属性 • 年齢 18カテゴリ(0-9, 10-14, 15-19, ..., 85-89, >90) • 就業状態 5カテゴリ (第1次産業,第2次産業,第3次産業,学生,主婦・その他)
評価実験 (2) • マイクロシミュレーションモデル • 加齢 • 死亡 • 誕生モンテカルロシミュレーション • 就業状態の変化 • 政策変数 • 5年後の発生交通量
実験結果 • 就業状態 => 「主婦・その他」とそれ以外の2カテゴリ • 年齢=> 6~9カテゴリ 学生・社会人 主婦・その他 多忙な社会人 活動的な主婦 幼い子供がいる 主婦や社会人 大学生,若手社会人 乳幼児,小・中・高生 余暇を自宅で満喫 余暇を活動的に満喫
まとめ • マイクロシミュレーションのセルベース推定における可変属性セル問題 • 最適な統合セル集合の探索手法の提案 • 単純な事例での有用性の確認 • マイクロシミュレーションに適した統合セル集合 • 政策変数における属性の特徴の抽出
部分解 (1) 連続値属性のとき • カテゴリ数だけ0,1の並んだビット列 • 隣り合う同一ビットでカテゴリの結合状況を表す 000111011110000000 ① ② ③ ④ ⑤ カテゴリ結合の通し番号
部分解 (2) カテゴリカル属性のとき • 2進数の並び 101011110110101110 5 6 3 6 5 6 遺伝子から算出された10進数 ↓ ↓ ↓ ↓ ↓ ↓ ① ② ③ ③ ① ③ カテゴリ結合の通し番号
全体解 • 部分解個体へのポインタの組合せ 2番目の属性 3番目の属性 1番目の属性 001111110001110001 011100000111100001 001111010000111100 000111110001100000 000001111100110001 011110000110011000 部分解集団
適応度 • 全体解 • 部分解 • 当該部分解個体を参照している全体解個体のうち,最も評価の高い全体解個体の適応度 セル数 T値