1 / 63

More Undecidable Problems

More Undecidable Problems. Rice’s Theorem Post’s Correspondence Problem Some Real Problems. Properties of Languages. Any set of languages is a property of languages. Example : The infiniteness property is the set of infinite languages. Properties of Langauges – (2).

teodoraj
Download Presentation

More Undecidable Problems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. More Undecidable Problems Rice’s Theorem Post’s Correspondence Problem Some Real Problems

  2. Properties of Languages • Any set of languages is a property of languages. • Example: The infiniteness property is the set of infinite languages.

  3. Properties of Langauges – (2) • As always, languages must be defined by some descriptive device. • The most general device we know is the TM. • Thus, we shall think of a property as a problem about Turing machines. • Let LP be the set of binary TM codes for TM’s M such that L(M) has property P.

  4. Trivial Properties • There are two (trivial ) properties P for which LP is decidable. • The always-false property, which contains no RE languages. • The always-true property, which contains every RE language. • Rice’s Theorem: For every other property P, LP is undecidable.

  5. Plan for Proof of Rice’s Theorem • Lemma needed: recursive languages are closed under complementation. • We need the technique known as reduction, where an algorithm converts instances of one problem to instances of another. • Then, we can prove the theorem.

  6. Closure of Recursive Languages Under Complementation • If L is a language with alphabet Σ*, then the complement of L is Σ* - L. • Denote the complement of L by Lc. • Lemma: If L is recursive, so is Lc. • Proof: Let L = L(M) for a TM M. • Construct M’ for Lc. • M’ has one final state, the new state f.

  7. Proof – Concluded • M’ simulates M. • But if M enters an accepting state, M’ halts without accepting. • If M halts without accepting, M’ instead has a move taking it to state f. • In state f, M’ halts.

  8. Reductions • A reduction from language L to language L’ is an algorithm (TM that always halts) that takes a string w and converts it to a string x, with the property that: x is in L’ if and only if w is in L.

  9. TM’s as Transducers • We have regarded TM’s as acceptors of strings. • But we could just as well visualize TM’s as having an output tape, where a string is written prior to the TM halting. • Such a TM translates its input to its output.

  10. Reductions – (2) • If we reduce L to L’, and L’ is decidable, then the algorithm for L’ + the algorithm of the reduction shows that L is also decidable. • Used in the contrapositive: If we know L is not decidable, then L’ cannot be decidable.

  11. Reductions – Aside • This form of reduction is not the most general. • Example: We “reduced” Ld to Lu, but in doing so we had to complement answers. • More in NP-completeness discussion on Karp vs. Cook reductions.

  12. Proof of Rice’s Theorem • We shall show that for every nontrivial property P of the RE languages, LP is undecidable. • We show how to reduce Lu to LP. • Since we know Lu is undecidable, it follows that LP is also undecidable.

  13. The Reduction • Our reduction algorithm must take M and w and produce a TM M’. • L(M’) has property P if and only if M accepts w. • M’ has two tapes, used for: • Simulates another TM ML on the input to M’. • Simulates M on w. • Note: neither M, ML, nor w is input to M’.

  14. The Reduction – (2) • Assume that  does not have property P. • If it does, consider the complement of P, which would also be decidable by the lemma. • Let L be any language with property P, and let ML be a TM that accepts L. • M’ is constructed to work as follows (next slide).

  15. Design of M’ • On the second tape, write w and then simulate M on w. • If M accepts w, then simulate ML on the input x to M’, which appears initially on the first tape. • M’ accepts its input x if and only if ML accepts x.

  16. On accept Simulate ML on input x Accept iff x is in ML Action of M’ if M Accepts w Simulate M on input w x

  17. Design of M’ – (2) • Suppose M accepts w. • Then M’ simulates ML and therefore accepts x if and only if x is in L. • That is, L(M’) = L, L(M’) has property P, and M’ is in LP.

  18. Design of M’ – (3) • Suppose M does not accept w. • Then M’ never starts the simulation of ML, and never accepts its input x. • Thus, L(M’) = , and L(M’) does not have property P. • That is, M’ is not in LP.

  19. Action of M’ if M Does not Accept w Simulate M on input w Never accepts, so nothing else happens and x is not accepted x

  20. Design of M’ – Conclusion • Thus, the algorithm that converts M and w to M’ is a reduction of Lu to LP. • Thus, LP is undecidable.

  21. A real reduction algorithm Hypothetical algorithm for property P M’ M, w This would be an algorithm for Lu, which doesn’t exist Picture of the Reduction Accept iff M accepts w Otherwise halt without accepting

  22. Applications of Rice’s Theorem • We now have any number of undecidable questions about TM’s: • Is L(M) a regular language? • Is L(M) a CFL? • Does L(M) include any palindromes? • Is L(M) empty? • Does L(M) contain more than 1000 strings? • Etc., etc.

  23. Post’s Correspondence Problem • But we’re still stuck with problems about Turing machines only. • Post’s Correspondence Problem (PCP) is an example of a problem that does not mention TM’s in its statement, yet is undecidable. • From PCP, we can prove many other non-TM problems undecidable.

  24. Should be “w sub i sub 1,” etc. PCP Instances • An instance of PCP is a list of pairs of nonempty strings over some alphabet Σ. • Say (w1, x1), (w2, x2), …, (wn, xn). • The answer to this instance of PCP is “yes” if and only if there exists a nonempty sequence of indices i1,…,ik, such that wi1…win = xi1…xin. In text: a pair of lists.

  25. Example: PCP • Let the alphabet be {0, 1}. • Let the PCP instance consist of the two pairs (0, 01) and (100, 001). • We claim there is no solution. • You can’t start with (100, 001), because the first characters don’t match.

  26. 0 01 100 001 100 001 Can add the second pair for a match Must start with first pair As many times as we like Example: PCP – (2) Recall: pairs are (0, 01) and (100, 001) But we can never make the first string as long as the second.

  27. Example: PCP – (3) • Suppose we add a third pair, so the instance becomes: 1 = (0, 01); 2 = (100, 001); 3 = (110, 10). • Now 1,3 is a solution; both strings are 0110. • In fact, any sequence of indexes in 12*3 is a solution.

  28. Proving PCP is Undecidable • We’ll introduce the modified PCP (MPCP) problem. • Same as PCP, but the solution must start with the first pair in the list. • We reduce Lu to MPCP. • But first, we’ll reduce MPCP to PCP.

  29. Example: MPCP • The list of pairs (0, 01), (100, 001), (110, 10), as an instance of MPCP, has a solution as we saw. • However, if we reorder the pairs, say (110, 10), (0, 01), (100, 001) there is no solution. • No string 110… can ever equal a string 10… .

  30. Representing PCP or MPCP Instances • Since the alphabet can be arbitrarily large, we need to code symbols. • Say the i-th symbol will be coded by “a” followed by i in binary. • Commas and parentheses can represent themselves.

  31. Representing Instances – (2) • Thus, we have a finite alphabet in which all instances of PCP or MPCP can be represented. • Let LPCP and LMPCP be the languages of coded instances of PCP or MPCP, respectively, that have a solution.

  32. Reducing LMPCP to LPCP • Take an instance of LMPCP and do the following, using new symbols * and $. • For the first string of each pair, add * after every character. • For the second string of each pair, add * before every character. • Add pair ($, *$). • Make another copy of the first pair, with *’s and an extra * prepended to the first string.

  33. Add *’s ($, *$) Ender (*1*1*0*, *1*0) Special pair version of first MPCP choice – only possible start for a PCP solution. Example: LMPCP to LPCP MPCP instance, in order: (110, 10) (0, 01) (100, 001) PCP instance: (1*1*0*, *1*0) (0*, *0*1) (1*0*0*, *0*0*1)

  34. LMPCP to LPCP – (2) • If the MPCP instance has a solution string w, then padding with stars fore and aft, followed by a $ is a solution string for the PCP instance. • Use same sequence of indexes, but special pair to start. • Add ender pair as the last index.

  35. LMPCP to LPCP – (3) • Conversely, the indexes of a PCP solution give us a MPCP solution. • First index must be special pair – replace by first pair. • Remove ender.

  36. Reducing Lu to LMPCP • We use MPCP to simulate the sequence of ID’s that M executes with input w. • If q0w⊦I1⊦I2⊦ … is the sequence of ID’s of M with input w, then any solution to the MPCP instance we can construct will begin with this sequence of ID’s. • # separates ID’s and also serves to represent blanks at the end of an ID.

  37. Reducing Lu to LMPCP – (2) • But until M reaches an accepting state, the string formed by concatenating the second components of the chosen pairs will always be a full ID ahead of the string from the first pair. • If M accepts, we can even out the difference and solve the MPCP instance.

  38. Reducing Lu to LMPCP – (3) • Key assumption: M has a semi-infinite tape; it never moves left from its initial head position. • Alphabet of MPCP instance: state and tape symbols of M (assumed disjoint) plus special symbol # (assumed not a state or tape symbol).

  39. Reducing Lu to LMPCP – (4) • First MPCP pair: (#, #q0w#). • We start out with the second string having the initial ID and a full ID ahead of the first. • (#, #). • We can add ID-enders to both strings. • (X, X) for all tape symbols X of M. • We can copy a tape symbol from one ID to the next.

  40. A B A B Example: Copying Symbols • Suppose we have chosen MPCP pairs to simulate some number of steps of M, and the partial strings from these pairs look like: . . . # . . . #ABqCD#

  41. Reducing Lu to LMPCP – (5) • For every state q of M and tape symbol X, there are pairs: • (qX, Yp) if δ(q, X) = (p, Y, R). • (ZqX, pZY) if δ(q, X) = (p, Y, L) [any Z]. • Also, if X is the blank, # can substitute. • (q#, Yp#) if δ(q, B) = (p, Y, R). • (Zq#, pZY#) if δ(q, X) = (p, Y, L) [any Z].

  42. qC D # Ep D # Example: Copying Symbols – (2) • Continuing the previous example, if δ(q, C) = (p, E, R), then: . . . #AB . . . #ABqCD#AB • If M moves left, we should not have copied B if we wanted a solution.

  43. Reducing Lu to LMPCP – (6) • If M reaches an accepting state f, then f “eats” the neighboring tape symbols, one or two at a time, to enable M to reach an “ID” that is essentially empty. • The MPCP instance has pairs (XfY, f), (fY, f), and (Xf, f) for all tape symbols X and Y. • To even up the strings and solve: (f##, #).

  44. A BfC D E # AfD E # fE # f## A f D E # f E # f # # Example: Cleaning Up After Acceptance … # … #ABfCDE#

  45. CFG’s from PCP • We are going to prove that the ambiguity problem (is a given CFG ambiguous?) is undecidable. • As with PCP instances, CFG instances must be coded to have a finite alphabet. • Let a followed by a binary integer i represent the i-th terminal.

  46. CFG’s from PCP – (2) • Let A followed by a binary integer i represent the i-th variable. • Let A1 be the start symbol. • Symbols ->, comma, and ε represent themselves. • Example: S -> 0S1 | A, A -> c is represented by A1->a1A1a10,A1->A10,A10->a11

  47. CFG’s from PCP – (3) • Consider a PCP instance with k pairs. • i-th pair is (wi, xi). • Assume index symbols a1,…, ak are not in the alphabet of the PCP instance. • The list language for w1,…, wk has a CFG with productions A -> wiAai and A -> wiai for all i = 1, 2,…, k.

  48. List Languages • Similarly, from the second components of each pair, we can construct a list language with productions B -> xiBai and B -> xiai for all i = 1, 2,…, k. • These languages each consist of the concatenation of strings from the first or second components of pairs, followed by the reverse of their indexes.

  49. Example: List Languages • Consider PCP instance (a,ab), (baa,aab), (bba,ba). • Use 1, 2, 3 as the index symbols for these pairs in order. A -> aA1 | baaA2 | bbaA3 | a1 | baa2 | bba3 B -> abB1 | aabB2 | baB3 | ab1 | aab2 | ba3

  50. Reduction of PCP to the Ambiguity Problem • Given a PCP instance, construct grammars for the two list languages, with variables A and B. • Add productions S -> A | B. • The resulting grammar is ambiguous if and only if there is a solution to the PCP instance.

More Related