660 likes | 780 Views
Perturbaciones antropogénicas de la quimiosfera orgánica: Implicaciones a escala global. Jordi Dachs Departamento de Química Ambiental, Instituto de Investigaciones Químicas y Ambientales de Barcelona Consejo Superior de Investigaciones Científicas (CSIC). Objetivos.
E N D
Perturbaciones antropogénicas de la quimiosfera orgánica: Implicaciones a escala global. Jordi Dachs Departamento de Química Ambiental, Instituto de Investigaciones Químicas y Ambientales de Barcelona Consejo Superior de Investigaciones Científicas (CSIC)
Objetivos • Perturbaciones antropogénicas de la quimiosfera • ¿Es posible cuantificar y caracterizar las perturbaciones químicas por compuestos sintéticos? • Transporte y sumideros de contaminantes orgánicos a escala global. • Evaluación de riesgo de las familias de compuestos químicos antropogénicos. • Cambio climático y la quimiosfera tóxica
Anthropogenic perturbations of the chemosphere • Emissions from fossil fuels (CO2, CO, NO, hydrocarbons….). • Emissions from combustion processes (Dioxins and Furans, PAHs, …) • Sinthetic chemicals used in industry and consumer products. • Emission of anthropogenic aerosols. • Changes in atmospheric chemistry and composition produced by all the above perturbations.
Emissions from Gasoline Combustion Schauer et al. Environ. Sci. Technol. 40, 1169-1180, 2002.
Semivolatile Compounds Dominate Air to Water Fluxes of OC H’=CGas / CWater Gas absorption Emissions FAbs=k CGas / H’ (Schauer et al. ES&T 2002) More than 95% of anthropogenic emissions of OC are as gas phase compounds
Emissions from Gasoline Combustion Shauer et al. Environ. Sci. Technol. 40, 1169-1180, 2002.
UCM Semi-Volatile Aliphatic Hydrocarbons in Petroleum(Quantified by GC-MS) Cn = CnH2n+2 CPI = Odd Cn/Even Cn = 1 The UCM has a toxic effect in marine organisms (Rowland et al. ES&T 2001, Donkin et al. 2003…)
Aliphatic Hydrocarbons in the NE Atlantic atmosphere Gas Phase --- 312 nmol m-3 CPI =1.2 UCM Aerosol Phase --- 40 nmol m-3 (6% of total AOC) CPI =1.9 UCM
The anthropogenic chemosphere (from non-combustion sources) • There are more than 8 millions substances available… • There are over 200.000 substances registered and in use, most of them in low volume production (less than 1 ton/year). • The world production of synthetic chemicals is of 3 108 tons y-1 (1993).
The anthropogenic chemosphere (except from combustion sources) • New chemicals are produced every year
The anthropogenic chemosphere (not including combustion sources) • About 30.000 chemicals are commercially available and have a production higher than 1 ton/year. • 10000 chemicals have a production higher than 4.5 tons y-1. • 4000 chemicals have a production higher than 1000 tons y-1. Muir & Howard. Environ. Sci. Technol. 40, 7157-7166, 2006.
The anthropogenic chemosphere, last 30 years (not including combustion sources) Muir & Howard. Environ. Sci. Technol. 40, 7157-7166, 2006.
Risk criteria to identify priority chemicals (PBT chemicals) • Production volume • Use profile • Physical-chemical characteristics: • Persistent • Bioaccumulative • Toxicity • Potential for long range transport.
¿Qué contaminantes orgánicos estudiar? (Hermens, J.L.M. En Toxicology, Niesink R.J.M. (Editor) CRC Press, New York, 1996) log KOW
Persistent Organic Pollutants (POPs) O Cln Clm Cln O Clm O Cln Clm Polychlorinated Dibenzo Dioxins and Furans (PCDD/Fs) Polychlorinated Biphenyls (PCBs) • Used in capacitors and transformers. Other uses in paints, plasticizers, etc. • - Carcinogens. Neurological, reproductive and immune effects. • By-product of combustion (plastics..) • Carcinogens.
Other POPs …. • Nonylphenols • Degradation product of alkylphenol polyethoxylates (industrial surfactants). • Endocrine disrupter. • Polycyclic Aromatics Hydrocarbons (PAH) • Produced during the incomplete combustion of organic matter (fossil fuels, vegetation ….). • Some are carcinogens.
Global Distribution of POPs in the atmosphere PCBs PBDEs Pozo et al. Environ. Sci. Technol. 2006.
Gas-Particle Partitioning Atmospheric Transport CA CG Wet Deposition Dry Deposition Air-Water Exchange Water-Particle Partitioning Continental Inputs Advection CW CP Vertical Fluxes Degradation Bioaccumulation Environmental fate of organic pollutants Major Permanent sinks: - Ocean interior (sediments, deep waters) - Atmospheric OH degradation
air H= octanol water Persistent Organic Pollutants (POPs) Multimedia Partitioning of POPs
Sampling Locations Western Mediterranean Sea Off-shore Banyuls sur Mer Off-shore Barcelona SW Mediterranean
Air-Water Exchange and Dry Aerosol Deposition of Nonylphenols to the Western Mediterranean Sea
40 Sandy Hook - NPs E 30 Concentration (ng m-3) Gas Phase 20 Aerosol Phase 10 0 Jun Jul Aug Sep Oct Nov Dec Jan 2 1 Log CG ( ng m-3) 0 -1 0.0033 0.0034 0.0035 0.0036 -1 1/Temp (K ) Atmospheric Occurrence of Nonylphenols Driven by Air-Water Exchange ( Dachs, J.,D.A. Van Ry, S.J. Eisenreich. Environ. Sci. Technol., 1999 and 2000.)
Atmospheric occurrence of Persistent Organic Pollutants (POPs) PCBs Nonylphenols Log Cg = -9135/T + 31.7 R2 = 0.88
Global distillation of semivolatile organic compounds (Wania, F. and Mackay, D. , Environ. Sci. Technol. 30, 390A-396A, 1996)
Selective Sequestration of Atmospheric POPs in Sediments from High Mountain Lakes Inventories in sediments vs. Temperature (Grimalt et al. Environ. Sci. Technol. 2001)
Controls on the Sequestration of atmospheric POPs in Sediments from High Mountain Lakes (Lake Redo, Pyrenees Mountains) k’W-Sed/k’W-Air = 0.5 k’W-Sed/k’W-Air = 2.5 Fluxes in mg y-1 (Meijer, S. et al. J. Geophys. Res.. On revision 2007)
Evidence for Gas-Phase Driven Phytoplankton accumulation of PCBs NW Atlantic Ocean un-correlated Correlated: R2 = 0.90 Correlated: R2 = 0.70 Correlated: R2 = 0.96 (Yan, et al. Environ. Pollut. 2007)
To which extend atmospheric inputs control water concentrations of POPs?
Influence of turbulence on water column concentrations and variability(Example: Adriatic Sea) PCB 28 (Jurado et al. 2007, Mar. Pollut. Bull 54, 441-451)
Acumulación de contaminantes orgánicos en la vegetación PCBs PCDDs PCDFs (Böhme et al. Environ. Sci. Technol. 33, 1805-1813, 1999)
(Mclachlan M.S. y M. Horstmann, Environ. Sci. Technol. 32, 413-420, 1998) Flujo de deposición en la vegetación Flujo de deposición en el suelo ________________________________ F= La vegetación como filtro de contaminantes
Global distribution of PCBs in Soils Meijer et al. Environ. Sci. Technol. 2003.
PCB usage (tn) Soil Conc (pg g-1) Inventory in soil or ocean mixed layer / Inventory in atm boundary layer PCB 101 Potential Environmental Reservoirs of POPs (Dalla valle, M., Dachs, J., Sweetman, A.J., Jones, K.C. Global Biogeochem. Cycles 2004. Dalla valle, M., Jurado, E., Dachs, J., Sweetman, A.J., Jones, K.C. Environ. Pollut. 2005.)
>> cruise data Cl5DD atmospheric concentration GAS: Cg [fg m-3] AEROSOL: Cp RV PELAGIA Jan-Feb 2001 Foday Jaward PCBs RRS Bransfield Oct-Dec 1998, Rainer Lohmann PCDD/Fs [fg m-3] (Lohmann et al. EST 2001, Jaward et al. EST 2004)
Climatological and Remote Sensing Data Chlorophyll Mixed Layer Depth 90N 60N 30N 0 30S 60S 90S 90N 60N 30N 0 30S 60S 90S 180W 90W 0 90E 180E 180W 90W 0 90E 180E 0 100 200 300 400 500 600 700 800 900 MLD (m) 0 1 2 3 4 Chlorophyll ( mg m-3) Water-Phytoplankton Fluxes
PCB 180 Comparison of Measured and Predicted PCB Sinking Fluxes North Atlantic Ocean Mediterranean Sea (Dachs et al 1996) (Gustafsson et al 1997) Arabian Sea (Dachs et al 1999) (Dachs et al. Environ Sci. Technol, 2002)
VOLATILIZATION Atmospheric Depositional Processes of POPs AEROSOLS contaminants associated with particles WATER DROPLETS gaseous contaminants DRY DEPOSITION OF PARTICLES WASHOUT OF PARTICLES WASHOUT OF GASES ABSORPTION OF GASES
Comparison of Atmospheric Depositional Processes for PCBs and PCDD/Fs (Atlantic Ocean) (Jurado et al. Environ. Sci. Technol. 2005)
Comparison of Predictions and Measurements of Wet Deposition of POPs
Global Sinks for atmospheric PCDD/Fs (Lohmann R., Jurado E. Dachs J., Lohmann U. Jones K.C 2006. J. Geophys. Res. DOI 10.1029/2005JD006923)
PCB Cycling Over the Open Atlantic Ocean Occurrence of Gas Phase PCBs (Jaward, F. et al. Evidence for dynamic air-water coupling and cycling of POPs over the Atlantic ocean Environ. Sci. Technol. 2004)
POP air-water coupling and cycling in the Open Atlantic Ocean Diurnal Cycling of Gas Phase PCBs Air-water exchange controls the diurnal cycle Air-water mass transfer coefficient Are Atmospheric Diurnal Cycles of PCBs Driven by the Marine Organic Carbon Cycle?
Sampling Cruise in the NE Atlantic (Off-shore Sahara,May-June 2003)
PAHs Along Two East-West Transects (NE Atlantic) Phenanthrene Pyrene (Del Vento & Dachs ES&T, 2007)
Atmospheric Residence times of PAHs The observed atmospheric residence times are 3.5 and 3.7 days for gas and aerosol phase PAHs
Atmospheric residence time over the ocean (atm. dep + reaction with OH radical) Air-deep water mass transfer coefficient (kADW) kADW = kAT kSink / (kAT + kSink) kAT= kAW + k’DD+ k’WD Then FAtm-Ocean = kADW CG/H’ Atmospheric Residence Time of POPs τ = inventory/net output = 1 / (rdeg + rADW)
Atmospheric Residence times Role of the Biological Pump and Temp. (air-deep water mass transfer coef.) Role of precipitation intensity PCB 180 as example (Jurado 2006)