130 likes | 278 Views
Ifgi, Muenster, Fall School 2005. Spatial Data Analysis: Course Outline. Gilberto Câmara INPE, Brazil. INPE - brief description. National Institute for Space Research main civilian organization for space activities in Brazil staff of 1,800 ( 800 Ms.C. and Ph.D.) Areas:
E N D
Ifgi, Muenster, Fall School 2005 Spatial Data Analysis: Course Outline Gilberto Câmara INPE, Brazil
INPE - brief description • National Institute for Space Research • main civilian organization for space activities in Brazil • staff of 1,800 ( 800 Ms.C. and Ph.D.) • Areas: • Space Science, Earth Observation, Meteorology and Space Engineering
CBERS-2 CBERS-2 Launch (21 October 2003)
CBERS-2 image from Louisiana, EUA • Obtained from on-board data recorder
Amazon Deforestation 2003 Deforestation 2002/2003 Deforestation until 2002 Fonte: INPE PRODES Digital, 2004.
Amazônia in 2005 source: Greenpeace
Amazônia in 2015? fonte: Aguiar et al., 2004
R&D in GIScience at INPE • Graduate programs in Computer Science and Remote Sensing • Research areas • Spatial statistics • Spatial dynamical modelling • Spatio-temporal databases • Image databases and image processing • Technology • TerraLib – open source library for ST DBMS
Course outline • Motivation: why do need spatial data analysis? • Point pattern analysis • Areal data analysis • Surface data analysis (geostatistics) • Trends in spatial data analysis
Course outline: 1st week • Monday – Introduction • 10:30 – 12:00 (2) • Tuesday – Basic concepts • 10:30 – 12:00 (2) • Wednesday – Areal analysis I (LAB work) • 9:00 – 10:30 and 11:00 – 12:30 (4) • Thursday – Areal analysis II • 9:00 – 10:30 and 11:00 – 12:30 (4) • Friday – Areal analysis III (LAB work) • 9:00 – 10:30 and 11:00 – 12:30 (4) • Saturday – QUIZ • 14:00 – 17:00 (LAB)
Course outline: 2nd week • Monday – Introduction to R (LAB) • 10:30 – 12:00 (2) • Tuesday – Surface analysis (LAB) • 9:00 – 10:30 and 11:00 – 12:30 (4) • Wednesday – Surface analysis II (LAB) • 9:00 – 10:30 and 11:00 – 12:30 (4) • Thursday – Point pattern analysis (LAB) • 9:00 – 10:30 and 11:00 – 12:30 (4) • Friday – Trends in spatial data analysis • 10:30 – 12:00 (2) • Saturday – Quiz • 14:00 – 17:00
Course material • Course homepage • www.dpi.inpe.br/gilberto/tutorials.html • Bailey and Gattrel, “Spatial Data Analysis by example” • Software • R – statistical suite (open source) • www.r-project.org • GeoDa – analysis of areal data (gratis) • TerraView – visualisation and analysis (open source) • www.terralib.org • TerraLib – GIS library (open source)