1 / 23

IPELS, 29 June-3 July, 2003 Whitefish, Montana, USA

A. Vaivads, M. Andr é , S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E. Wahlund. IPELS, 29 June-3 July, 2003 Whitefish, Montana, USA. The small scale structure of the magnetopause Current layers and waves.

teryl
Download Presentation

IPELS, 29 June-3 July, 2003 Whitefish, Montana, USA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E. Wahlund IPELS, 29 June-3 July, 2003Whitefish, Montana, USA • The small scale structure of the magnetopause • Current layers and waves

  2. Why small scales and waves? • Importance for large scale phenomena • Decoupling of particles • Energy transport • Energy conversion, particle energization • Remote or local sensing tool • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  3. What we want to know? • Structure? sheet vs tube local vs global dispersion relation • Transport plasma, energy (particles, Poynting flux) • Momentum equationGeneralized Ohm’s law free energy • Energy conversion j·E • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  4. Cluster and magnetopause scales • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  5. Orbit in March Cluster orbit, magnetopause crossings after Parks(1991) • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  6. Magnetopause ~50 c/wpi Zoom into ~5 c/wpi • 2002-Feb-06 0810-0815UT • High latitude MP crossing • 100km Cluster separation • s/c in burst mode • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  7. Density dip ~1c/wpi • Narrow current sheet (yellow) 5-10le,re • Strongest E fields within the current sheet • Differences among s/c in E and B. • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  8. Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  9. Generalized Ohms law and Cluster • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  10. 5-10le,re current sheet,jperp and jII • B and n gradients coincides • E~j x B • pe not important • e- beam carrying jII can generate waves • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  11. E~j x B, all 4 s/c • Potential drop across the current sheet of a few 100 V • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary

  12. Numerical simulations of reconnection [Rogers] • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary • Two fluid, reconnection with a guide field • Te=0, t=0 • Width of separatrix is a few c/wpe • E is strong along the separatrix • E ~j x B, in most of the system

  13. MP reference frame • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary • EM>0, EN strong inside density dip • Inflow velocity ~ magnetopause velocity

  14. Waves strongest in the narrow current sheet (gradient in n and B) • Broad band • Spectral peaks f~fLH • Spectral peaks f~100 Hz, ’whistlers’ • Poynting flux associated to both ’whistlers’ and ’LHD’ • Waves generated by gradients or electron beams? n E • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary E B S  S

  15. Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary • 15-35 Hz band-pass filter (LH) • kre~1 • low coherence • wave transports e- across the current sheet. • D10-9 m2/s, Diffusion?

  16. Diffusion at magnetopause • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary Treumann [2001]

  17. Laboratory observations [Carter et al. 2002] MRX – magnetic reconnection experiment • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary • LHD waves • near the low-b edge • low coherence • no clear correlation with reconnection rate • Studies of B and narrow current sheets in progress

  18. LHD waves in laboratory vs. space • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary • Next step - to compare current sheets and whistlers

  19. Summary • Strong E (10s mV/m) within narrow current sheets ~10 c/wpeon magnetospheric side of MP • E~jxB, pe is not important • Separatrix of reconnection Other explanations? • Strong lower hybrid drift waves and whistlers • Electron transport due to LHD waves can be important only within the current sheet • D 109 m2/s, diffusion? • Comparisons with 3D numerical simulations • Many more events • Separatrix studies in lab • Intro • Cluster • MP crossing • E~jxB • Separatrix • Waves • Summary Future

  20. Particle diffusion, effective collision frequency Diffusion approximation Effective collision frequenacy • Analytically - n,v (E+dispersion relation) • Observations - n (satellite potential fluctuations) - v=ExB (for electrons)

  21. Other event 2001-03-02 E B S|| F

  22. Aurora vs Magnetopause • Aurora - ion scales, can go down to electron scales • Auroral field lines – narrow current sheets of Region I, II current systems strong jII, particle acceleration, waves often boundary phenomena (PSBL) • Infering EII from measurements of Eperp

  23. Scales Small spatial scales  between ion and electron scales and smaller  a few tens of km and below

More Related