110 likes | 230 Views
OPIM 915 -- #7 Animation. Label Correcting Algorithm. An Example. . . 2. 4. 2. 3. 3. 3. 1. . . -2. 6. 1. 5. 7. 0. Initialize. 2. 3. 4. 3. d(1) := 0; d(j) := for j 1. -4. 3. 6. . . In next slides: the number inside the node will be d(j).
E N D
OPIM 915 -- #7Animation Label Correcting Algorithm
An Example 2 4 2 3 3 3 1 -2 6 1 5 7 0 Initialize 2 3 4 3 d(1) := 0; d(j) := for j 1 -4 3 6 In next slides: the number inside the node will be d(j). Violating arcs will be in thick lines.
An Example 2 3 3 3 3 1 -2 6 0 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 3 3 3 3 1 -2 6 0 6 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 3 3 3 3 1 -2 6 0 6 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 3 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 5 3 3 3 3 1 -2 6 0 6 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 3 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 5 3 3 3 3 1 -2 6 0 4 6 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 3 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 5 3 3 3 3 1 -2 6 0 6 4 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 3 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 5 3 3 3 3 1 -2 6 0 6 4 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 3 2 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 5 3 3 3 3 1 -2 6 0 6 4 9 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 3 2 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij.
An Example 2 5 3 3 3 3 1 -2 6 0 4 6 9 Generic Step 2 3 4 3 An arc (i,j) is violating if d(j) > d(i) + cij. -4 2 3 6 Pick a violating arc (i,j) and replace d(j) by d(i) + cij. No arc is violating We now show the predecessor arcs. The distance labels are optimal