1 / 38

La partecipazione del gruppo di Bologna (luminometro) alle attivita’ di ATLAS

La partecipazione del gruppo di Bologna (luminometro) alle attivita’ di ATLAS. A. Bertin, M. Bruschi, S. De Castro, L. Fabbri, P. Faccioli, B. Giacobbe, F. Grimaldi, I. Massa, M. Piccinini, M. Poli, C. Sbarra, N. Semprini-Cesari, R. Spighi, M. Villa, A. Vitale, A. Zoccoli. Contenuto.

tfritz
Download Presentation

La partecipazione del gruppo di Bologna (luminometro) alle attivita’ di ATLAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. La partecipazione del gruppo di Bologna (luminometro) alle attivita’ di ATLAS A. Bertin, M. Bruschi, S. De Castro, L. Fabbri, P. Faccioli, B. Giacobbe, F. Grimaldi, I. Massa, M. Piccinini, M. Poli, C. Sbarra,N. Semprini-Cesari, R. Spighi, M. Villa, A. Vitale, A. Zoccoli M. Bruschi-CSN1 Napoli 21 Settembre 2005

  2. Contenuto Le attività del gruppo di Bologna in ATLAS: • Test delle schede di elettronica del LVL1 per le camere a Muoni • Luminometro (LUCID): elettronica di lettura e di trigger + simulazioni • Presentazione del progetto • L’elettronica di LUCID e stime (preliminari) dei costi Altri interessi del gruppo: • Partecipazione alla fisica & trigger di alto livello: fisica di alto Ptediffrattiva • Partecipazione al computing M. Bruschi-CSN1 Napoli 21 Settembre 2005

  3. Attività sul LVL1 a Bologna Il test delle schede di elettronica del LVL1 (prodotte da Roma1) per le camere a Muoni, verrà effettuato a Bologna. Inizio: Settembre 2005. Test di: ~800 Pad-OR ~800 mother boards con test JTAG e ELMB Rate di test richiesto: 7 board/day Tempo previsto per il test del sistema: >6 mesi M. Bruschi-CSN1 Napoli 21 Settembre 2005

  4. Attività sul LVL1 a Bologna - II • Prima riunione e trasporto del materiale il 7 Settembre. • La scorsa settimana testate le prime 20 schede OR • Le rimanenti schede OR (~800) in viaggio verso Bologna. • Inizio lavoro sistematico sull’intero sistema (OR+mother) ad inizio Ottobre. • 3 persone dedicate full-time al lavoro (2 su fondi universitari) + altre a rotazione. •  Schedula dettagliata del test a Ottobre. M. Bruschi-CSN1 Napoli 21 Settembre 2005

  5. ATLAS -LUMINOSITY Importance of Luminosity measurements: • Cross sections for “Standard “ processes • t-tbar production • W/Z production • …… Theoretically known to better than 10% ……will improve in the future • New physics manifesting in deviation of  x BR relative the Standard Model predictions • Important precision measurements • Higgs production  x BR • tan measurement for MSSM Higgs • …… M. Bruschi-CSN1 Napoli 21 Settembre 2005

  6. Relative precision on the measurement of HBR for various channels, as function of mH, at Ldt = 300 fb–1. The dominant uncertainty is from Luminosity: 10% (open symbols), 5% (solid symbols). (ATLAS-TDR-15, May 1999) ATLAS –Luminosity (cont.) Some examples Higgs coupling tan measurement Systematic error dominated by luminosity (ATLAS Physics TDR ) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  7. ATLAS Luminosity Measurement Program • Relative luminositya DEDICATED luminosity monitor is needed LUCID LUCID will provide the luminosity per BX as well • Absolute luminosity • Goal: • measure L with ≲ 2-3% accuracy • How: • LHC Machine parameters • Use ZDC in heavy ion runs to understand machine parameters • rates of well-calculable processes:e.g. QED, QCD • optical theorem: forward elastic rate + total inelastic rate: • needs ~full |η| coverage-ATLAS coverage limited • Use totmeasured by others (TOTEM) • Combine machine luminosity with optical theorem • luminosity from Coulomb Scattering  Roman Pots ATLAS pursuing all options •  Roman Pots M. Bruschi-CSN1 Napoli 21 Settembre 2005

  8. Motivations for LUCID Requirements: • A very radiation hard detector to be used as luminosity monitor • Good time resolution to resolve individual beam crossings • Insensitive to soft background particles • Pointing capability • A large dynamic range and no saturation at the highest luminosity • A simple, robust and cheap construction Solution: LUCID: LUminosity measurement using a Cherenkov Integrating Detector - The design is based on the Cherenkov Luminosity Counter (CLC) that is operating successfully at CDF. - Gas filled tubes around the beampipe act as a Cherenkov detector and detects particles from the I.P. that are above the Cherenkov threshold (2.7 GeV for pions and 9 MeV for electrons) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  9. Basics of the detector 2 detectorsx 200 Al tubes filled with C4F10 or Isobutane at atmospheric pressure Winston cones at the end of the tubes focus the Cherenkov light onto quartz fibres Beampipe M. Bruschi-CSN1 Napoli 21 Settembre 2005

  10. The fibre read-out M. Bruschi-CSN1 Napoli 21 Settembre 2005

  11. General Considerations-I The purpose of this talk is to describe a possible baseline for the design of the ATLAS luminometer (LUCID) readout electronics and trigger scheme. Our aim (since last June) is to achieve, as soon as possible, the following points: • Define the general scheme of the electronics • Tune, by MC simulation and test beam, the final design parameters • Provide a cost estimate per readout channel and time schedule for the realization of the electronics • Start as soon as possible with the design in order to be ready in 2007 M. Bruschi-CSN1 Napoli 21 Settembre 2005

  12. General Considerations-II Main Goals of the LUCID electronics: • For each triggered event (ROD level): • Number of tracks • Tracks time of arrival • Monitor level • Number of tracks per bunch • Tracks time of arrival per bunch • Trigger Level • Provide a fast trigger on “properly” filled bunch or on-time events • Provide a RAP-GAP vetoing for forward physics Strategy: exploit available FED solutions where possible M. Bruschi-CSN1 Napoli 21 Settembre 2005

  13. Known Facts Background from particles crossing fibers Background from sec. vtx Signal from IP • Reject off - BX background sources (part of beam gas interactions, satellites BX, interactions originating off-IP) • Provide a detailed BX structure monitor • Guarantee the selection of events in time with the readout electronics of all the ATLAS detector  • IMPORTANT TOOL FOR THE WHOLE ATLAS DATA TAKING 3) Hit fibers pattern (7x2 bit @L1) 2) Signal time-of-arrival measurement (1 bit @L1) 1) Amplitude meas. (2+1 bit @ L1) • High Occupancy ~30% (at max. luminosity) • Max. 3 tracks/tube (at max. luminosity) • The amount of information to be handled @L1 can be encoded in 18 bit • MAPMT and FE are in a low level radiation area for electronics (5 Gray/year) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  14. M. Bruschi-CSN1 Napoli 21 Settembre 2005

  15. System Architecture VME BUS: TTCvi, CTRL sign.,etc FRONT END (FEPCB) Similar to Roman Pot FE: OPERA/MAROC chip Input: MAPMT Output: DIGITIZED INFORMATION on LVDS Links (~0.5 Gb/s) ROD L V D S L I N K S 22x2 M A P M T TRIGG. CARD ROD ROD ROD PC HV FE CONTROL ROS M. Bruschi-CSN1 Napoli 21 Settembre 2005

  16. THE OPERA/MAROC CHIPBLOCK FUNCTIONALITY DIAGRAM SUM_OUT 9 Signal current outputs (sum over 7 out) 9 MUX_OUT 1 Multiplexed current output (for channel monitor) 1 Photons Preamp. Bipolar Fast Shaper Photomultiplicator 63 TRIG_OUT 63 Trigger outputs x 2 bit/output/BX on 9 LVDS TX Trigger Unipolar Fast Shaper Gain correction 6 Bits (2n-4, n=0..5) 4 discriminator thresholds 4 x 10 bits DACs Modifications for Lucid in blue text M. Bruschi-CSN1 Napoli 21 Settembre 2005

  17. OPERA/MAROC chip : LAYOUT • Technology: SiGe 0.35 m • Submitted mid-June, expected mid September • Chip area : 12 mm2 (3.5mm *3.9mm) • 64 channels, 3.5V power supply • Power consumption : 350 mW • 228 pins • A lot of flexibility: • Gain adjustment per channel (6 bits) • 4 thresholds • Multiplexed currentmeasurement 1 tube  7 readout channel 1 mapmt  9 tubes Output for LUCID: 9 current (sum over 7 channels) 1 current (multiplexed for channel control) 63 x 2 bit (80 MHz clock, for trigger) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  18. Single Tube Readout Unit(7 channels) 25 ns LHC Clock LHC Int. Time time 15 ns 10 ns int reset ADC GATE TDC START time 1/9 data from the MAROC CHIP LVDS S/P #1 2 1 2 18 2 2 TUBE LUT (260 kB) 2 TDC START 2 Discr. (Prog. Thr +NR) 2 #7 Window Programmable Comparator 2 8 3 1 STOP Fan Out TDC to the trigger unit GI + ADC Multiplicity per Tube LUT 8 3 MAROC CHIP SUM_OUT ADC GATE STRU RAW DATA TO READOUT per STRU ~ 5-6 Bytes/BX M. Bruschi-CSN1 Napoli 21 Settembre 2005

  19. LUCID ROD BOARD (22 units + spares) – VME 9U s-LINK Busy ~200 Bytes/ev s-LINK to ROS 160 MB/s 6 Bytes EVENT BUFFER DPRAM stru 1 6 Bytes DPRAM Analog_In 1 stru 2 stru 2 SUM_OUT 1_1 Analog_In 2 SUM_OUT 1_2 from CTRL LOGIC from CTRL LOGIC 6 Bytes DPRAM stru 20 Analog_In 20 SUM_OUT 2_10 VME I.F LVDS_In 1 LVDS 1_1 LVDS S/P VME P1 LVDS_In 2 LVDS 1_2 LVDS_In 18 LVDS 2_9 3 LVDS S/P LVDS 1_1 (to trig. unit) 3 LVDS 1_2 (to trig. unit) LVDS 2_1 (to trig. unit) 3 LVDS 2_2 (to trig. unit) CTRL LOGIC opt. lnk from TTCIX TTCRQ i.f. M. Bruschi-CSN1 Napoli 21 Settembre 2005

  20. LUCID TRIGGER BOARD (1 unit + spares) – VME 9U s-LINK Busy s-LINK to ROS 160 MB/s 1 LVDS 1_1 D e t e c t o r 1 ~200 Bytes/ev 2 LVDS 1_2 Signal Buffer FPGA based TRIGGER PROCESSING UNIT 43 LVDS 22_1 VME I.F 44 LVDS 22_2 44 ser. Inp 594 bit/BX VME P1 44 ser. Inp 594 bit/BX 1 D e t e c t o r 2 LVDS 23_1 2 LVDS 23_2 Signal Buffer Algorithm: MC simulations are needed 43 LVDS 44_1 44 LVDS 44_2 CTRL LOGIC opt. lnk from TTCIX TTCRQ i.f. to the L0 trigger M. Bruschi-CSN1 Napoli 21 Settembre 2005

  21. Description of the main building blocks of the readout electronics • OPERA MAROC CHIP • Adapted to LUCID needs from the RP design (ATLAS Orsay group) • Gated Integrator + ADC • 8 bit for the total sum should be enough • Contacts have been taken with the LHCb preshower group (Clermont) for adapting their GI+ADC solution • TDC • 25 ns full range; • 300 ps MAPMT resolution  7-8 bit • CERN HPTDC will be used (32 channel at 2MHz  2 channels at 32 MHz, but still convenient) • LOGIC • Mainly Based on LUT (but still to be optimized) • IMPLEMENTED on FPGAs • Flexible and robust • ENGINEERING • Integration has to be studied but standard VME 9U will be probably preferred M. Bruschi-CSN1 Napoli 21 Settembre 2005

  22. First Costs Estimate TOTAL M. Bruschi-CSN1 Napoli 21 Settembre 2005

  23. Tentative Time Schedule (3 units) (full production) (25 units) (full production) (2 units) (full production) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  24. Time Profile Goals of the project • Detector ready beginning 2007 • FED and ROD ready in 2007 in useful time before the start of LHC operation • Trigger Board before the end of 2007 Funding Profile according to these goals: M. Bruschi-CSN1 Napoli 21 Settembre 2005

  25. Study the best solution for the tube readout (gas pressure, number and type of fibers per tube, MAPMT type)  Test Beam at DESY October Main goals of the Test beam (1/10-14/11): Photon generation, transfer and losses Generation, processing and transmission of electrical signals Baseline Readout Device: MAPMT H 7546 (64 ch-UV glass win.) MC Study to refine design parameter (TDC & ADC resolution), occupancy (# of channels), trigger algorithm Next Steps: System Optimization (Test Beam & MC) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  26. TEST BEAM: the MAPMT-FIBERS connection M. Bruschi-CSN1 Napoli 21 Settembre 2005

  27. Richieste finanziarie 2006(variazioni rispetto ai moduli in colore violetto) Richieste finanziarie 2006: • M.I. : 21 k€ metabolismo • M.E. : 142.5 k€ metabolismo + test beam + C&I • Consumo: 21 k€ metabolismo (+5 k€ per l`attivita` sul LVL1) • Inventario: 17.5 k€ farm di computing per analisi (Tier 3 like) in comune con il gruppo BO-RPC (responsabile per I 2 gruppi:F. Semeria) • Costruzione apparati: 270k€ (<350k€ ) per elettronica LUCID Comprendenti PM, Cavi, crates etc. • Trasporti: 3 k€  (per l`attivita` sul LVL1) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  28. Conclusions • The Bologna Group activities in ATLAS are started I many different areas. • The group will test the LVL1 boards (~830 Pad-OR and mother boards) in Bologna. The setting-up is started. The systematic work will begin in October. • The group is involved in the LUCID detector (lumi monitor). Main activities are concerning: • MC simulations • Electronic design M. Bruschi-CSN1 Napoli 21 Settembre 2005

  29. BACKUP M. Bruschi-CSN1 Napoli 21 Settembre 2005

  30. Conclusions - II • We are developing, based on the present knowledge of the detector, a baseline design of the LUCID electronics • We consider this baseline being in a quite advanced stage and capable to fulfill the detector requirements (more: with the TDC options LUCID become an IMPORTANT DETECTOR for the ATLAS DATA TAKING) • Forthcoming test beam and MC simulation will be valuable inputs to improve (in case, simplifying) the design • We have already solutions at hand for critical devices (front-end chip, G.I.,ADC, TDC) that make us confident for a start of data taking together with LHC M. Bruschi-CSN1 Napoli 21 Settembre 2005

  31. More infos - Groups involved in LUCID: University of Alberta, University & INFN Bologna, CERN, University of Lund, University of Montreal, Max Planck Institute, University of Manchester (?), SACLAY Italy would represent ~50% of the group - Total cost of the project for INFN : ~ 400 k€ Would represent ~50% of the total cost M. Bruschi-CSN1 Napoli 21 Settembre 2005

  32. General Considerations-III • For the description of the readout electronics I will refer essentially to the baseline of the detector described in the LOI • Detector: formed by two parts each one consisting of 200 Cherenkov counters (tubes) 5 layers/section x 40 tubes/layer x 7 fibers/tube x 2 sections = 2800 fibers • Signal: Prompt particles coming from the IP (primaries) will traverse the full length of the counter and generate a large amplitude signal in the photo-detector • Background I: Particles originating from secondary interaction of prompt particles in the detector material and beam-pipe (secondaries) are softer and will traverse the counters at larger angles (multiple reflections), with shorter path lengths Background I significantly smaller than signal • Background II: Particles crossing the readout fibers will produce light only on the crossed fibers  Background II will have different pattern of hit fibers wrt signal M. Bruschi-CSN1 Napoli 21 Settembre 2005

  33. Signal amplitude measurement • CLC have the important feature to guarantee a proportionality between the number of primary particles traversing a single tube and the resulting signal amplitude. • These detectors response is not subjected to Landau fluctuations (present in scintillators) and the counter’s amplitude distribution will show distinct peaks for the different particle multiplicities hitting the counters.  LUCID, with an appropriate readout and trigger system can provide the Total Tracks multiplicity per BX M. Bruschi-CSN1 Napoli 21 Settembre 2005

  34. Signal time-of-arrival measurement A “precise” measurement of the arrival time of a track in the LUCID detector will help to: • Reject off - BX background sources (part of beam gas interactions, satellites BX, interactions originating off-IP) • Provide a detailed BX structure monitor • Guarantee the selection of events in time with the readout electronics of all the ATLAS detector  • IMPORTANT TOOL FOR THE WHOLE ATLAS DATA TAKING Hit fibers pattern Important to reject Background (essentially of type II) M. Bruschi-CSN1 Napoli 21 Settembre 2005

  35. M. Bruschi-CSN1 Napoli 21 Settembre 2005

  36. M. Bruschi-CSN1 Napoli 21 Settembre 2005

  37. Location of the detector Situation when the forward shielding is removed: M. Bruschi-CSN1 Napoli 21 Settembre 2005

  38. M. Bruschi-CSN1 Napoli 21 Settembre 2005

More Related