1 / 6

Math 1304 Calculus I

Math 1304 Calculus I. 4.09 – Antiderivatives. Antiderivatives. A function F(x) whose derivative is a given function f(x) is called an antiderivative of f(x). An antiderivative of zero is any constant. Two anitderivatives of a given function differ by a constant. Notation. Example.

thelen
Download Presentation

Math 1304 Calculus I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Math 1304 Calculus I 4.09 – Antiderivatives

  2. Antiderivatives • A function F(x) whose derivative is a given function f(x) is called an antiderivative of f(x). • An antiderivative of zero is any constant. • Two anitderivatives of a given function differ by a constant.

  3. Notation

  4. Example • Power - please verify

  5. Recall: A good working set of rules • Constants: If F(x) = c, then f’(x) = 0 • Powers: If F(x) = f(x)n, then F’(x) = n f(x)n-1 f’(x) • Exponentials: If F(x) = af(x), then F’(x) = (ln a) af(x) f’(x) • All trigonometric functions: If F(x) = sin(f(x)), then F’(x) = cos(f(x)) f’(x) If F(x) = cos(f(x)), then F’(x) = - sin(f(x)) f’(x) • Hyperbolic functions • All inverse trig functions • Scalar mult: If F(x) = c f(x), then F’(x) = c f’(x) • Sum: If F(x) = g(x) + h(x), then F’(x) = g’(x) + h’(x) • Difference: If F(x) = g(x) - h(x), then F’(x) = g’(x) - h’(x) • Multiple sums: derivative of sum is sum of derivatives • Linear combinations: derivative of linear combo is linear combo of derivatives • Product: If F(x) = g(x) h(x), then F’(x) = g’(x) h(x) + g(x)h’(x) • Multiple products: If F(x) = g(x) h(x) k(x), then F’(x) = g’(x) h(x) k(x) + g(x) h’(x) k(x) + g(x) h(x) k’(x) • Quotient: If F(x) = g(x)/h(x), then F’(x) = (g’(x) h(x) - g(x)h’(x))/(h(x))2 • Composition: If F = fog is a composite, defined by F(x) = f(g(x)) then F'(x) = f'(g(x))g'(x)

  6. Rules for Antiderivatives • Each of these transforms into a rule for antiderivatives.

More Related