250 likes | 395 Views
W( → eν)+jets. Kira Grogg UW-Madison 05 August, 2009. Action Items. Maximum likelihood fit to W transverse mass Still learning how to do fits with Minuit Comparison of my events numbers to those in W inclusive Showing Wenu and Tauola ttbar Need to rerun on QCDs Using HLT_Ele15_LW_L1R
E N D
W(→eν)+jets Kira Grogg UW-Madison 05 August, 2009 K. Grogg, UW-Madison
Action Items • Maximum likelihood fit to W transverse mass • Still learning how to do fits with Minuit • Comparison of my events numbers to those in W inclusive • Showing Wenu and Tauola ttbar • Need to rerun on QCDs • Using HLT_Ele15_LW_L1R • Plots of reconstructed tops • V+jets meeting • Strategies for selecting >=n jet events? • Strategies for minimizing systematic effects? K. Grogg, UW-Madison
W Event number comparisons All numbers are weighted to 100 pb-1 Sample is Wenu Summer08 V11 Added HLT matching – Selecting highest pT electron that match HLT object There is a ~ 0.1% difference in event number K. Grogg, UW-Madison
Ttbar Event number comparisons All numbers are weighted to 100 pb-1 Sample is TauolaTTbar Summer08 V11 Added HLT matching – Selecting highest pT electron that match HLT object There is a 2.5% difference in event count after the electron pT and eta cuts Adding the isolation and ID requirements corrects this difference K. Grogg, UW-Madison
Iso and ID plots/cuts Isolation with MET cut Isolation with W mT cut SumIsos SumIsos MET with isolation cut W mT with isolation cut K. Grogg, UW-Madison
MET & W mT for ≥ 1 jet QCD events Little correlation Some correlation at low mT Isolated electrons Anti-isolated electrons MET W mT K. Grogg, UW-Madison
MET & W mT vs Isosum Profiles for ≥ 1 jet QCD events SumIsos SumIsos Some correlation MET mT MET mT SumIsos SumIsos K. Grogg, UW-Madison
MET and W mT vs Isolation for ≥ 1 jet events MET mT W events W events SumIsos SumIsos MET mT QCD events QCD events A C B D SumIsos SumIsos K. Grogg - UW-Madison
MET and W mT vs Isolation for ≥ 1 jet events, Numbers MET mT A C A C NA = NC B D B D NB = ND SumIsos SumIsos SumIsos MET vs Iso for QCD W mT vs Iso for QCD (NB * NC)/ND = 44114 =? NA (NB * NC)/ND = 12328 =? NA NA = 33307 NB = 313473 NC = 921498 ND = 6.54x106 NA = 23716 NB = 323064 NC = 274468 ND= 7.19x106 K. Grogg - UW-Madison
Reconstructing Tops • W events • Ttbar events Preliminary K. Grogg, UW-Madison
Reconstructing Tops Preliminary W events Ttbar events K. Grogg, UW-Madison
Sum of reconstructed top pT • Tops reconstructed using • Electron, met and closest jet to electron • Other three jets in event • Plot is sum of the two tops pT K. Grogg, UW-Madison
W transverse mass W events Ttbar events K. Grogg, UW-Madison
Conclusions/Next steps • Event number comparisons are closer but not exact • Possible different method of selecting electron candidate • ABCD method did not work easily for Δφin &Δηin vs isolation • There is correlation between variables • Trying ABCD method with MET vs Iso and mT vs Iso • Better numbers NA / NB ~ NC / ND • Currently working on: • Verifying heavy flavor QCD and photon+jets backgrounds • Background estimation and subtraction methods • ABCD method • Fitting W transverse mass • Finalizing even number comparisons K. Grogg, UW-Madison
Backup K. Grogg, UW-Madison
Signal + Background Samples • W+jets • Cross section 40 nb-1 • /Wjets/Summer08_IDEAL_V11_redigi_v1/GEN-SIM-RECO • QCD • Cross section X-Y - 20-30: 0.40 mb-1, 30-80: 0.10 mb-1, 80-170: 1.9*103 mb-1 • /QCD_Emenriched_PtXtoY/Summer08 _IDEAL_V11_redigi_v2/GEN-SIM-RECO • Z+jets • Cross section 3.7 nb-1 • /ZJets/Summer08_IDEAL_V11_redigi_v1/GEN-SIM-RECO • Ttbar+jets • Cross section 353 pb-1 • /TauolaTTbar/Summer08_IDEAL_V11_redigi_v2/GEN-SIM-RECO • Using PAT and Particle Flow with CMSSW_2_2_13 K. Grogg, UW-Madison
MET for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B MET, 1 reco jet MET, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 MET, 3 reco jets MET, 4 reco jets K. Grogg, UW-Madison
MET for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B MET, 1 reco jet MET, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 MET, 3 reco jets MET, 4 reco jets K. Grogg, UW-Madison
W mT for 1, 2, 3, 4+ jet events W mT, 1 reco jet W mT, 2 reco jets Backgrounds are stacked Red line is stack of S+B Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 W mT, 3 reco jets W mT, 4 reco jets K. Grogg, UW-Madison
W mT for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B W mT, 1 reco jet W mT, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 W mT, 3 reco jets W mT, 4 reco jets K. Grogg, UW-Madison
W pT for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B W pT, 1 reco jet W pT, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 55 < mT < 105 W pT, 3 reco jets W pT, 4 reco jets K. Grogg, UW-Madison
W pT for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B W pT, 1 reco jet W pT, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 55 < mT < 105 W pT, 3 reco jets W pT, 4 reco jets K. Grogg, UW-Madison
Leading Jet pT for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B Leading jet pT, 1 reco jet Leading jet pT, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 55 < mT < 105 Leading jet pT, 3 reco jets Leading jet pT, 4 reco jets K. Grogg, UW-Madison
Leading Jet pT for 1, 2, 3, 4+ jet events Backgrounds are stacked Red line is stack of S+B Leading jet pT, 1 reco jet Leading jet pT, 2 reco jets Selection applied: Electron |η| < 2.4 Electron pT > 20 GeV V11 tuned ID cuts RelCombIso < 0.1 55 < mT < 105 Leading jet pT, 3 reco jets Leading jet pT, 4 reco jets K. Grogg, UW-Madison
Electron Efficiency Electron Reconstruction Efficiency Electron Reconstruction + ID Efficiency K. Grogg, UW-Madison