1 / 40

格子 QCD による有限密度系 シミュレーション

格子 QCD による有限密度系 シミュレーション. S. Muroya Tokuyama Women’s College in collabolation with A. Nakamura, C. Nonaka and T. Takaishi. Muroya, Nakamura, Nonaka and Takaishi : PTP 110 ( 03 ) 615, hep-lat/0306031. 最近のレヴューです. 物理学最前線 “クォークマター” 宮村修 1986. 物理学最前線 “クォークマター” 宮村修. 物理学最前線 “クォークマター” 宮村修.

Download Presentation

格子 QCD による有限密度系 シミュレーション

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 格子QCDによる有限密度系シミュレーション S. Muroya Tokuyama Women’s College in collabolation with A. Nakamura, C. Nonaka and T. Takaishi

  2. Muroya, Nakamura, Nonaka and Takaishi : PTP 110(03)615,hep-lat/0306031 最近のレヴューです

  3. 物理学最前線 “クォークマター” 宮村修 1986

  4. 物理学最前線 “クォークマター” 宮村修

  5. 物理学最前線 “クォークマター” 宮村修

  6. 高密度QCD 複雑な相構造 RHIC JPARC Thomas Schafer, hep-ph/0304281 Ferro-Mgn.? Q-Hall st ?

  7. 流体モデルのインプットに使っている状態方程式の例( Nonaka, Honda, Muroya )

  8. 化学ポテンシャル Lagrange未定定数 • 統計力学 • 場の理論 保存量 (保存電荷) constant gauge field P.A.M. Dirac (‘56) Y. Nambu (‘68)

  9. Chemical Potential on a Lattice k:hopping parameter quark mass • Introducing the chemical potential on a lattice (Wilson fermion)

  10. Phase (sign) problem

  11. quench 計算では、化学ポテンシャルの影響がいつから見え出すか? • プロットはシミュレーション • 実線は πによるμc評価 • 点線はバリオンによるμc評価 • 破線は平均場近似 Dynamical Quark is indispensable I. Barbour et al, NP275 (’86) M.A. Stephanov, PRL(‘96) chiral limit では μc = 0 か?

  12. Wilson Fermion の固有値分布 β= 5.7, κ=0.16 , 4x4x4x4 Lattice μ=0.0 μ=0.4 μ=0.3 μ=0.2

  13. K-S Fermion の固有値分布 ( m =0.1, beta = 5.7) μ=0.2 μ=0 μ=0.3 μ=0.4

  14. Approach to high density state of the Lattice QCD • Reweighting method • Fodor & Katz • Grasgow • Taylor expansion • Imaginary Chemical Potential • Density of the state • Positive Measure model • Susceptibility against chemical potential Nishimura’s talk Irina’s talk

  15. Susceptibility against chemical potential クォーク数密度 MILC Collabolation

  16. 擬スカラーmeson mass の応答 second derivative for chemical potential QCD-TARO Collaboration

  17. 高次の微係数を計算する⇔物理量をmで展開 m/T Gavai and Gupta, quenched QCD, 4th order of m

  18. Fodor-Katz, JHEP03(2002)014 Standard gauge + Staggered fermion

  19. Reweighting • Fodor and Katz • Multi-reweighting • method

  20. Glasgow approach

  21. Taylor expansion at high T and low m • Allton et al. (Bielefeld-Swansea) hep-lat/0204010 Improved action + Improved staggered fermion 170 MeV ma=0.29

  22. m微分の4次まで

  23. Imaginary Chemical Potential deForcrand and Philipsen NPB642(02)290; hep-lat/0307020 D’Elia and Lombardo Phys.Rev. D67 (2003) 014505 • At small m Z(3) symmetry Standard gauge + Staggered fermion

  24. Allton et al. Fodor-Katz Consistent !? YES deForcrand-Philipsen D’Elia and Lombardo

  25. Effective theory Finite Isospin Two-color QCD Pseudo-Real Models free from Sing Problem Monte Carlo Calculation Works Well !

  26. 3 4 X8 Clear evidence of r meson mass decrease at finite chemical potential ! Color SU(2) r at Finite Density , k = 0.160 r p

  27. Color SU(2) r at Finite Chemical Potential • Peculiar behavior of a vector meson at finite density k=0.175 k=0.160 a a • Mass of r becomes small ! • Remind us of the CERES Experiment

  28. Thermodynamical Quantities 4 b = 0.7 Baryon number density Gluon energy density • Nf = 2, 4 ma k k ma Polyakov line ma k

  29. 3 4 X8 Polyakov Line Susceptibility • Anti periodic (spatial direction) periodic (spatial direction) k=0.160 0.0002 0.0001 0 0.8 0 0.4 ma

  30. Polyakov Line Susceptibility 4 4 periodic ma k

  31. 粒子対凝縮 ? Kogut-Toublan-SInclare 外場の入ったシミュレーション

  32. (see Nishida’s talk) • Sinclare and Kogut, • p condensation with m_I • diquark condensation in colorSU(2)

  33. 重みだと思う phase quenching 2 flavor finite iso-spin model  phase quench model Configulation の update は可能なはず

  34. mの大きいところは揺らぎが小さい? Bilic, Demeterfi and Petersson, NPB337(‘92) m

  35. R-algorithm Nakamura, Sasai, Takaishi, 基研研究会(2003)

  36. Nakamura, Sasai, Takaishi, 基研研究会(2003)

  37. 位相の揺らぎ Bielfelt-Swansea,PRD68(03) Nakamura, Sasai, Takaishi, 基研研究会(2003)

  38. 高密度 Lattice QCD • Lattice simulation for small mseems to work enough • SU(3)の複雑な相構造まで届いてはいない • カラーを持った凝縮を出せるか? • 高密度状態は計算可能か? Muroya, Nakamura, Nonaka and Takaishi : PTP 110(03)615,hep-lat/0306031 RHIC JPARC Thomas Schafer, hep-ph/0304281 Ferro-Mgn.? Q-Hall st ?

More Related