1 / 19

Introduction

Introduction

theta
Download Presentation

Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction The use of the coordinate plane can be helpful with many real-world applications. Scenarios can be translated into equations, equations can be graphed, points can be found, and distances between points can be calculated; but what if you need to find a point on a line that is halfway between two points? Can this be easily done? 6.2.1: Midpoints and Other Points on Line Segments

  2. Key Concepts Lines continue infinitely in both directions. Their length cannot be measured. A line segment is a part of a line that is noted by two endpoints, (x1, y1) and (x2, y2). The length of a line segment can be found using the distance formula, . The midpoint of a line segment is the point on the segment that divides it into two equal parts. 6.2.1: Midpoints and Other Points on Line Segments

  3. Key Concepts, continued Finding the midpoint of a line segment is like finding the average of the two endpoints. The midpoint formula is used to find the midpoint of a line segment. The formula is . You can prove that the midpoint is halfway between the endpoints by calculating the distance from each endpoint to the midpoint. It is often helpful to plot the segment on a coordinate plane. DELETE THIS WHILE CHECKING PICKUP: I moved the bottom bullet on this slide from after the table on the next page so things would fit better 6.2.1: Midpoints and Other Points on Line Segments

  4. Key Concepts, continued Other points, such as a point that is one-fourth the distance from one endpoint of a segment, can be calculated in a similar way. 6.2.1: Midpoints and Other Points on Line Segments

  5. Key Concepts, continued 6.2.1: Midpoints and Other Points on Line Segments

  6. Common Errors/Misconceptions misidentifying x1, x2 and y1, y2 attempting to use the distance formula to locate the midpoint attempting to use the midpoint formula to find points that split the segment in a ratio other than using the wrong endpoint to locate the point given a ratio incorrectly adding or subtracting units from the identified endpoint 6.2.1: Midpoints and Other Points on Line Segments

  7. Guided Practice Example 1 Calculate the midpoint of the line segment with endpoints (–2, 1) and (4, 10). 6.2.1: Midpoints and Other Points on Line Segments

  8. Guided Practice: Example 1, continued Determine the endpoints of the line segment. The endpoints of the segment are (–2, 1) and (4, 10). 6.2.1: Midpoints and Other Points on Line Segments

  9. Guided Practice: Example 1, continued Substitute the values of (x1, y1) and (x2, y2) into the midpoint formula. Midpoint formula Substitute (–2, 1) and (4, 10). 6.2.1: Midpoints and Other Points on Line Segments

  10. Guided Practice: Example 1, continued Simplify. (1, 5.5) 6.2.1: Midpoints and Other Points on Line Segments

  11. Guided Practice: Example 1, continued The midpoint of the segment with endpoints (–2, 1) and (4, 10) is (1, 5.5). ✔ 6.2.1: Midpoints and Other Points on Line Segments

  12. Guided Practice: Example 1, continued 6.2.1: Midpoints and Other Points on Line Segments

  13. Guided Practice Example 2 Show mathematically that (1, 5.5) is the midpoint of the line segment with endpoints (–2, 1) and (4, 10). 6.2.1: Midpoints and Other Points on Line Segments

  14. Guided Practice: Example 2, continued Calculate the distance between the endpoint (–2, 1) and the midpoint (1, 5.5). Use the distance formula. Distance formula Substitute (–2, 1) and (1, 5.5). Simplify as needed. 6.2.1: Midpoints and Other Points on Line Segments

  15. Guided Practice: Example 2, continued The distance between (–2, 1) and (1, 5.5) is units. 6.2.1: Midpoints and Other Points on Line Segments

  16. Guided Practice: Example 2, continued Calculate the distance between the endpoint (4, 10) and the midpoint (1, 5.5). Use the distance formula. Distance formula Substitute (4, 10) and (1, 5.5). Simplify as needed. 6.2.1: Midpoints and Other Points on Line Segments

  17. Guided Practice: Example 2, continued The distance between (4, 10) and (1, 5.5) is units. The distance from each endpoint to the midpoint is the same, units, proving that (1, 5.5) is the midpoint of the line segment. 6.2.1: Midpoints and Other Points on Line Segments

  18. Guided Practice: Example 2, continued ✔ 6.2.1: Midpoints and Other Points on Line Segments

  19. Guided Practice: Example 2, continued 6.2.1: Midpoints and Other Points on Line Segments

More Related