1 / 34

The Experimental Quest for In-Medium Effects

The Experimental Quest for In-Medium Effects. Romain Holzmann GSI Helmholtzzentrum f ü r Schwerionenphysik, Darmstadt at 23 rd Indian-Summer School of Physics and 6 th HADES Summer School: Physics @ FAIR October 3-7, 2011 in Rez/Prague, Czech Republic.

thi
Download Presentation

The Experimental Quest for In-Medium Effects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Experimental Quest for In-Medium Effects Romain Holzmann GSI Helmholtzzentrum für Schwerionenphysik, Darmstadt at 23rd Indian-Summer School of Physics and 6th HADES Summer School: Physics @ FAIR October 3-7, 2011 in Rez/Prague, Czech Republic • Lecture I: Pedestrian’s approach • Lecture II: Experiments galore • Lecture III: HADES at GSI

  2. Lecture III:Investigating dense matter with HADES at GSI:Present and future Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  3. Physics we are after with HADES (High Acceptance DiElectron Spectrometer) In very general terms: Medium modifications of hadrons (e.g. vector mesons) • chiral symmetry restoration vs. hadronic effects • enhanced dilepton yields → emissivity of hot & dense hadronic matter • in-medium spectral functions • systematic dilepton spectroscopy in AA, pA and pA (ρ/ρ0  1-3) Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  4. S. Vogel et al. Phys. Rev. C78 (2008) 044909 30 11 2 GeV Rapp & Wambach Adv. Nucl. Phys. 25 (2000) Exploring the phase diagram at high μB Andronic et al., Nucl. Phys. A 837 (2010) 65 Trajectories from Ivanov et al., PRC 73 (2006) 044904 • Probing nuclear matterat SIS: • densities: max/r0 2 - 3 • temperature: T  50 -100 MeV • N resonances become important System stays above ground state density for   10 - 15 fm/c UrQMD Au+Au thermal model at r =r0 HADES operates here! Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  5. π0 & η prod. in p+p Physics we are after with HADES (High Acceptance DiElectron Spectrometer) In very general terms: Medium modifications of hadrons (e.g. vector mesons) • chiral symmetry restoration vs. hadronic effects • enhanced dilepton yields → emissivity of hot & dense hadronic matter • in-medium spectral functions • systematic dilepton spectroscopy in AA, pA and pA (ρ/ρ0  1-3) • Hadron production & spectroscopy • meson and baryon production • coupling of rand to N* • spn vs. spp • strangeness production • form factors of , f, D, 0and L • systematic dilepton (and hadron) spectroscopy in pp, pn and pp (ρ/ρ0 = 0) → needed to model p+A & A+A Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  6. The HADES detector at GSI Physics accessible with HADES: Dielectrons in NN: p+p and n+p Dielectrons in HI: from C+C to Au+Au Vector mesons in cold matter: p+Nb Strangeness production: p+p, p+A, A+A Pion-induced reactions: (2012-2016) SIS100: (>2017) Technical paper: G. Agakishiev et al. Eur. Phys. J. A41, 243 (2009) General documentation: http://www-hades.gsi.de • azimuth. symmetry • large coverage: y = 0 - 2 • hadron & lepton PID • 2% mass resolution • LVL2 lepton trigger • plastic forward wall /RPC Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI 9 R. Holzmann, GSI Darmstadt ECT* Dileptons September 13-17, 2010

  7. SIS18 Unilac π production target ESR HADES HADES at SIS18 Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  8. B A primer for theorists p = m∙ βc►mass How to identify a particle? ►Z ►e- vs. hadrons Measure its: velocity β: momentum p: energy loss in matter dE/dx: Cherenkov (or transition) radiation: calorimetry ► total energy E This needs a sophisticated detector, e.g. HADES

  9. “TOF”( ) “RICH” (electron ID, hadron-blind) “Pre-Shower” (electron ID) “MDC” (tracking, ) Detector components Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  10. TOF Cryostat Pre-Shower outer MDC outer MDC RPC B field region inner MDC He pipe beam Start + target Technical layout of HADES HADES cave HADES sector inner MDC RICH readout Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  11. 20% p0 Dalitz 60% γ conversion g g e+ p0 e+ Q~ 15.20 Q~ 2.20 e- e- The RICH: a hadron-blind detector • γ > 18 hadron-blind, but... ► use segmented target Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  12. ~ 55 mm Segmented target • Example: 3.5 GeV p+Nb • 93Nb material • 12 pellets of Ø = 1.25 mm • Δz = 4.5 mm • 2.8% interaction prob. beam Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  13. IPN Orsay LHE Dubna FZR GSI Tracking: the Multiwire Drift Chambers • 4 MDC/sector • total 33 m2area, 27000 cells • y<0.1mmresolution • Ar-iC4H10 [60-40]gas and low-Z material ORSAY plane wire planes: 10o,-20o,0o,0o,20o,-10o Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  14. field map + tracking planes Runge-Kutta track fit Tracking: superconducting toroidal magnet Bmax = 0.8 Tesla (mid-plane) bending power = 0.36 Tm (typically operated at 70% - 90% of max. field) Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  15. e- velocity vs. momentum e+ e- Electron/positron identification MDC hit finder & hit/track matching RICH pattern Pre-Shower condition + + Data Monte Carlo e- e+ Momentum * charge [MeV/C] Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  16. Pair reconstruction Combinatorial background subtraction 0 e- e- e- e+  From: • like-sign pairs • or event mixing e+ e+ 0  e- p1 q RICH rings e+ p2 Signal: S+-= Ne+e- - CB+- lepton/baryon Lepton pair reconstruction uncorrelated pairs Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  17. The HADES Collaboration on tour Italy: Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud Istituto Nazionale di Fisica Nucleare, Sezione di Milano Poland: Smoluchowski Institute of Physics, Jagiellonian University of Cracow Portugal: LIP-Laboratório de Instrumentação e Física Experimental de Partículas Cyprus: Department of Physics, University of Cyprus Czech Republic: Nuclear Physics Institute, Academy of Sciences of Czech Republic France: IPN (UMR 8608), Université Paris Sud Germany: GSI, Darmstadt FZ Dresden-Rossendorf IKF, Goethe-Universität Frankfurt II.PI, Justus Liebig Universität Giessen PD E12, Technische Universität München Russia: INR, Russian Academy of Science Joint Institute of Nuclear Research ITEP Spain: Departamento de Física de Partículas, University of Santiago de Compostela Instituto de Física Corpuscular, Universidad de Valencia-CSIC 17 institutions 120+ members Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  18. First HADES data: e+e- production in C+C Checking on DLS: Is there excess e+e- yield? How does the excess evolve with bombarding energy? And with system size? – or – Is there physics beyond free NN? Efficiency-corrected di-electron spectra, normalized to the number of neutral pions: Cocktail generated with PLUTO Phys. Lett. B 663(2008)43 Phys.Rev. Lett 98(2007) 052302 Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  19. HADES DLS π0→e+e–γ η→e+e–γ Hades DLS Hades DLS mid-rapidity mid-rapidity 1 AGeV C+C: HADES confirms DLS • π0, η acceptance • HADES >> DLS vs. ► HADES fully confirms highly controversial DLS findings in C+C: Porter et al., PRL 79 (1997) 1229 Agakishiev et al., PLB 690 (2010) 118 Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  20. e+e- production in 1.756 GeV/u Ar+KCl • Again, strong overshoot above the cocktail of long-lived sources! • First ω peak seen at SIS energies! ~ 40 counts Cocktail of long-lived sources: π0, η, and ω • ► MLVL1(ω) = (6.5 ± 2.8) ·10-3 ±20% sys. Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  21. Cut View pr psp FWq > 7o p d Tagging quasi-free np reactions in HADES p+p: d+p: quasi-free np OBE calculations reproduce pp, but not (yet) np ! Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  22. Preparing a “reference” for A+A Definition of a ”reference” based on pp and np data: • Compare excess over η in Ar+KCl • with excess over η in reference x2.5 - 3 • η contributions subtracted ! • yield normalized to M(π0) ►► Excess over free NN! Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  23. SIS SPS RHIC Low-mass dilepton excess present at all energies, although quite different processes contribute… Excess dilepton yield in HIC ► Excitation function of the dilepton yield still largely unknown: HADES & CBM will provide this information at FAIR.

  24. Strangeness production in Ar+KCl  →K+K- • HADES has • high mom resolution • high acceptance • good particle ID • vertexing 1.76 GeV/u Ar+KCl PID based on dE/dx and TOF Ξ-→ Λπ- TB = 84 PRC 80 (2009) 025209 PRL 103 (2009) 132310 PRC 82 (2010) 021901 EPJA 44 (2010) etc. Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  25. The Hades upgrade project (2010/11) • List of HADES upgrade subprojects: •  RPC - Resistive Plate Chamber FINISHED •  Time res. 50-80 ps, high granularity •  Forward Wall FINISHED •  range 0.2 – 7 degrees, centrality, reaction plane •  DAQ-Upgrade FINISHED •  goal 20 kHz for Au+Au LVL1 •  MDC I rebuild  system stability Commissioning Summer 2011: commissioned with Au beam • Meta detector,  < 45 deg. • Time res: 350 ps. • PreShower pos. res: 1.5 cm • Limitation: multihit capability 1 RPC sector • RPC performance (beam test) •  Efficiency above 95 % •  Time res. 50-80 ps •  Negligible crosstalk < 1% Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  26. Simulated counts for 4 weeks beam 1.25 GeV Au+Au Next runs at SIS18: 1.25 GeV/u Au+Au • HADES upgrade nearly completed • new MDC inner tracking plane • new RPC timing detectors • new and faster readout electronics • Forward Wall installed • ► Getting ready for Au run 2nd Q 2012 Expected pair rates/day + plenty of strangeness! Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  27. dispersive plane 7.5o Experiments with pion beams:The GSI secondary pion beam line • Q doublet defines acceptance •  = 2.3 msr • Momenta up to 2.8 GeV/c , p/p = 8% • Beam spot at the HADES focal point: • 3σx – 2.0 cm, 3σy – 1.8 cm • H1, H2 & H3 for beam momentum • reconstruction (fiber/silicon det.) • p/p = 0.3% Momentum of the beam particles reconstructed with precision of 0.3%  Tracking in the beam line: silicon strip detector  Diamond in front of the target for background rejection Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  28. SIS100 Cassing & Bratkovskaya calculations for FAIR central Au+Au Particle production in the HSD transport model Thermal

  29. A Photon Calorimeter for HADES • Adding a calorimeter to HADES offers: • Better lepton ID • Neutral mesons in p+A & A+A • Direct photons in p+A & A+A • Hadron zoo in p+p & π+p Photon decays: π0 →γγ η →γγ η’ →γγ ω→π0γ→γγγ + Dalitz decays

  30. 0.8 AGeV Au+Au TAPS S/B=2.7 % 158 AGeV Pb+Pb 100+100 AGeV Au+Au PHENIX WA98 WA80 S/B=0.07 % S/B = 0.2% – 5% S/B < 0.5% CB-subtracted mγγ spectra • large photon combinatorial background • small signal/background ratios •  needs a high-resolution EM calorimeter A. Wolf et al. PRL 69 (98) 5281 Neutral meson detection in A+A 200 AGeV S+Au R. Albrecht et al. PLB 361 (95) 14

  31. η→γ e+e- measured in HADES + calorimeter: Eta Dalitz reconstruction in simulation S/B >1 ► Potentially interesting, but needs to be explored in simulations!

  32. 2017: HADES goes underground HADES in the CBM cave Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  33. The HADES roadmap: 2012-2018 • The present planning foresees: • 2012: Au+Au run at 1.25 AGeV (dileptons + strangeness) • 2013: first pion beam run (physics goals still being discussed) • 2014: Ag+Ag run at 1.65 AGeV (dileptons + strangeness) • 2015: another pion beam run ?? • 2016: move HADES to CBM cave at SIS100 • 2018: first beams from SIS100 ??? Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

  34. CBM 8 – 45 GeV/u HADES 2 – 8 GeV/u Conclusions and outlook • Understanding pp, np & πN processes is essential for A+A !!! • In Ar+KCl onset of “medium” effects • strong baryonic contribution to e+e- • first observation of vector mesons • 2nd focus on strangeness production • Upgraded HADES will investigate • heavy systems up to Au+Au • πN and πA reactions • + strong strangeness program • Move to SIS100 planned for 2016/17 • add lead glass calorimeter • do physics at 2 – 8 AGeV Rez 2011 - The Experimental Quest for In-Medium Effects - R. Holzmann, GSI

More Related