170 likes | 419 Views
Modeling a PCM storage unit for solar thermal cooling in Masdar City. Irene Rubalcaba Montserrat RSC Members: Dr. Matteo Chiesa Dr. Peter Armstrong Dr. Ali Abbas. Solar cooling system. Charging mode. Solar Field. Discharging mode. Generator. Cooling System. Heat Exchanger.
E N D
Modeling a PCM storage unit for solar thermal cooling in Masdar City Irene Rubalcaba Montserrat RSC Members: Dr. MatteoChiesa Dr. Peter Armstrong Dr. Ali Abbas
Solar cooling system Charging mode Solar Field Discharging mode Generator Cooling System Heat Exchanger Condenser PCM Storage Unit Pump Evaporator Pump Drum Absorber
Power profile from the Beam Down [kW] 21st of March 2011
Supply and demand disparitystorage opportunity Extra heat to store Storage use
STORAGE MODELINGGeometry CYLINDRICAL STORAGE COMPARTMENT Length=11m COPPER PIPE Length=11m Outside Diameter= 0.012m Thickness=1mm
Modeling phase change using COMSOL Melting range = ΔTm ΔTm = 490 to 493 K Cp= 1330 + Latent heat/ΔT FULLY SOLID Cp = 1330 [J/KgK] FULLY LIQUID Cp = 1330 [J/KgK]
Numerical modeling • Problem Type: Transient Thermal Fluid • Model Used: Time depending - Non Isothermal flow Incompressible Navier- Stokes: Heat Transfer by conduction and convection: • Geometry is considered 2D axial symmetry
2D Axial symmetry model Maximum Energy Storage Capacity: 400 [MJ] + Sensible Heat
Numerical Results for 44 tubes after 20700 seconds - 5.75 hr Enthalpy Temperature
Effect of fins No fins 5 Fins 10 Fins 20 Fins
Effect of inlet velocity v= 0.0932 m/s v= 0.0832 m/s v= 0.07992 m/s v= 0.07629 m/s
Final Design • Material= KNO3-NaNO3(eu) 81 tubes L =11m ri= 1 cm r0= 3 cm Total volume= 5.7m3 Total PCM mass = 4.209 tons Maximum storage capacity = 400[ MJ] + sensible heat