280 likes | 303 Views
Light from the edge : a 3-D investigation of 2-D organic micro- billiard lasers Clément Lafargue 1 , S. Lozenko 1 , S. Bittner 1 , C. Ulysse 2 , C. Cluzel 3 , J. Zyss 1 , M. Lebental 1 1 – Laboratoire de Photonique Quantique et Moléculaire, ENS de Cachan.
E N D
Light from the edge: • a 3-D investigation of 2-D organic micro-billiard lasers Clément Lafargue1, S. Lozenko1 , S. Bittner1, C. Ulysse2, C. Cluzel3, J. Zyss1, M. Lebental1 1 – Laboratoire de Photonique Quantique et Moléculaire, ENS de Cachan. 2 – Laboratoire de Photonique et de Nanostructures , CNRS, Marcoussis. 3– Laboratoire de mécanique et technologie, ENS de Cachan.
Organic microlasers Conventional laser Dye-doped polymer micro-cavity Amplifying medium Resonating Cavity + Usual configuration weak confinement n ≈ 1.5
Numerical modeling Analyte solution flow Semi-classical modeling Emission Diffraction Unidirectional lasing Measurement and model POSTER, S. Bittner : Localization of modes in a dielectric square resonator N.Djellali, APL 95, 101108 (2009) LPQM – microlaser group topics Chaotic cavities POSTER, I. Gozhyk : Towards the control of polarization properties of solid state organic lasers Lebental, APL 88, 031108 (2006) I. Gozhyk, PRA 86, 043817 (2012) S.Lozenko “Microfluid” EU Project
Motivation: diffraction at dielectric corners and edges Dielectric corner no solution Metallic corner n1 Sommerfeld 1896 n2 A standing wave in a resonator to explore the corner
Outline • Background on organic microlasers • Fabrication • Experiment • Emission/diffraction properties • Fabry-Pérot like cavities • Square cavities • Triangular microlasers
Outline • Background on organic microlasers • Fabrication • Experiment • Emission /diffraction properties • Fabry-Pérot like cavities • Square cavities • Triangular microlasers
n2=1 Cavity n≈1.5 PMMA + Dye 0.6-0.7 μm SiO2 n=1.45 SEM photograph 0.6 µm 1μm Organic microlaser: Fabrication Fabrication: Electron-beam lithography 50-200 µm Microscope photograph 50-200 µm • Arbitrary cavity shapes • Different laser dyes
Images Organic microlasers: characterization Excitation geometry pumping 532 nm Spectrum L Lasing thresholds ~610 nm emission collecting lens Emission diagrams Spectrometer Wavelength [nm]
Images Organic microlasers: characterization Experimental Measurements Spectrum L Lasing thresholds Emission diagrams
Images Organic microlasers: characterization Experimental Measurements FAR FIELD DETECTION Spectrum L Lasing thresholds Emission diagrams Physical Review A 75, 033806 (2007)
Images Organic microlasers: characterization Experimental Measurements F.S.R. Spectrum L Lasing thresholds Semi-classical approach Emission diagrams Periodic Orbits PRA 76, 023830 (2007)
Images Organic microlasers: characterization Experimental Measurements Spectrum L Lasing thresholds Emission diagrams
Outline • Background on organic microlasers • Fabrication • Experiment • Emission/diffraction properties • Fabry-Pérot like cavities • Square cavities • Triangular microlasers
3D emission- latitude diagrams FP Measurement:
FP 3D emission- latitude diagrams Sergey Lozenko J.A.P. 111, 103116 (2012) z Measurement: x
FP 3D emission - latitude diagrams Model: Slit diffraction Interference (wafer) C. Lafargue, to be submitted
Outline • Background on organic microlasers • Fabrication • Experiment • Emission/diffraction properties • Fabry-Pérot like cavities • Square cavities • Triangular microlasers
a nL Square microlaser : diffractive outcoupling Diamond orbit confined by total internal reflection … = n x 2√2 a
Square microlaser : diffractive outcoupling Diamond orbit confined by total internal reflection … … but losses occur via diffraction
Square microlaser : diffractive outcoupling Pump : Camera Pumppolarizationeffects I. Gozhyk, PRA 86, 043817 (2012),
Outline • Background on organic microlasers • Fabrication • Experiment • Emission/diffraction properties • Fabry-Pérotlike cavities • Square cavities • Triangular microlasers
Periodic Orbits in triangles • A not so simple shape (not regular contour) • No totally confined periodic orbits • An open mathematical question: « Does a periodic orbit in a triangle exist ? » Alain Grigis, University Paris XIII ?
100° 40° 40° FP winning
FP not always winning 110° Camera view 35° 35° 110° Despite the fact FP is in family, the other isolated orbit is winning
Diffractive orbit 98.04° 40° 41.96°
Summary • Diffraction effects from the edges on different contours : • 3D Fabry-Pérot emission well understood • Square : emission at the corners • 3D emission depends on the cavity shape • Triangles • Identification of orbits • Switching between different types of orbits • Observation of a diffractive orbit
Perspectives clement.lafargue@ens-cachan.fr