370 likes | 399 Views
Explore the concepts of scaling functions and wavelets for multiresolution analysis in signal processing, from Haar wavelets to Daubechies wavelets with vanishing moments. Understand the properties and decomposition of wavelet functions. Learn about the continuous wavelet transform and wavelet basis functions. Dive into analysis and synthesis techniques for signal processing applications.
E N D
Chapter 03Multiresolution Analysis (MRA) V0 V1 V2
Multiresolution Gjennomsnitt V0 V1 V2 V3 V4 Differens W0 W1 W2 W3
J=5 Antall samplinger: 2J = 32 Analysis /SynthesisExample
AnalysisSynthesisJ=5 Sampling: 25 = 32 j=5 j=4 j=3 j=2 j=1 j=0
Scaling functionExample 1 1 1 2 1 3 n n+1
Scaling function that span V0 Scaling function V0 L2(R)
Scaling Function that span V0Example 1 1 2 3 4 5 5 1 1 2 3 4 5
Scaling Function (unnormalized) that span Vj 1 1 Dilation Translation 1 1 1 1 1 1 1 1 1 1 1 1
Scaling Function (normalized) that span Vj 1 1 Dilation Translation 2 1/2 2 1/2 2 2 2 2
Scaling functions (normalized) Scaling function V0 V1 V2
Normalization of scaling functions Scaling function Inner product Norm Scaling functions (Orthonormal)
Haar Scaling Functions (unnormalized) that span Vj k 0 1 2 3 j 0 1 1 For hver j: Basisfunksjoner: (2jt-k) k = 0,…2 j-1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1
Haar Scaling Functions (normalized) that span Vj k 0 1 2 3 j 0 1 1 For hver j: Basisfunksjoner: j,k(t) k = 0,…2 j-1 2 1/2 2 1/2 1 1 1 2 2 2 2 2 1 1 1 1 2 3/2 2 3/2 2 3/2 2 3/2 3 1 1 1 1
V1 V2 Scaling Function that span V1 and V2 1 1
Haar Scaling Functions that span Vj j = 0,1,2,3 j 0 1 2 3 k 0 1 2 3 4 5 6 7
V0 V1 Relation between V0 and V1Haar Wavelet - Triangle Wavelet Scaling function
Examples of h-coefficients n=2 D2 Haar scaling function n=3 n odd --> one coefficient = 0 n=4 D4 Daubechies four-tap solution One degree of freedom
Examples of h-coefficients n=4 One degree of freedom D2 D4
DaubechiesVanishing moments The continuous wavelet transform (CWT) Taylor series at t=0 until order n (b=0 for simplicity) Moments of the Wavelet
DaubechiesVanishing moments Wavelet until Daubechies: - Haar Compact support, but discontinuous - Shannon Smooth, but extend the whole real line - Linear spline Continuous, but infinite support Daubechies: Hierarchy of Wavelets: n = 2 : Haar Compact support, discontinuous M0 = 0 n = 4 : D4 Compact support, continuous, not diff. Mi = 0 i=0..n/2-1 n = 6 : D6 Compact support, continuous, 1 diff. Mi = 0 i=0..n/2-1 n = 8 : D8 Compact support, continuous, 2 diff. Mi = 0 i=0..n/2-1 ...
Wavelet functions Scaling function V0 V1 V2 W0 W1 Wavelet function
Properties of the g-coefficients Scaling function V0 V1 V2 W0 Wavelet function W1
Analysis - From Fine Scale to Coarse Scale Synthesis - From Coarse Scale to Fine Scale Analysis Synthesis
J=5 Antall samplinger: 2J = 32 Analysis /SynthesisExample
AnalysisSynthesisJ=5 Sampling: 25 = 32 j=5 j=4 j=3 j=2 j=1 j=0