1 / 34

Areas of Parallelograms and Triangles!

Areas of Parallelograms and Triangles!. L.T.#1: Be able to find the areas of parallelograms (including rhombuses, rectangles, & squares)! L.T.#2: Be able to find the areas of triangles!. Quick Review:. In a triangle, an altitude goes from a _______ and is ____________ to the opposite side.

thor
Download Presentation

Areas of Parallelograms and Triangles!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Areas of Parallelograms and Triangles! L.T.#1: Be able to find the areas of parallelograms (including rhombuses, rectangles, & squares)! L.T.#2: Be able to find the areas of triangles! Quick Review: In a triangle, an altitude goes from a _______ and is ____________ to the opposite side. Quick Vocab: In a parallelogram, an altitude does the same thing! This is also called the _______.

  2. Area of any Parallelogram: Note: The base can be any side—you choose! But, the height depends on which side you pick to be the base. Key: The base and height are always _____________ to each other.

  3. 4.5 in. 6 ft 4 in. 5 in. 6 ft 3 m 4.6 cm 8 m 3.5 cm 2 cm Find the area of each parallelogram. Don’t forget your units!

  4. Find the area of the parallelogram with the given vertices! P (1, 2) Q (4, 2) R (6, 5) S (3, 5) J (-3, -3) K (0, 4) L (5, 4) M (2, -3)

  5. Find the height of the parallelogram! 15 cm A = 600 cm2 Find the value of x. 1.5 m x 12 in. 13 in. 10 in. Just in case you were getting bored…

  6. 12 30° x y y 45° x Section 11.2 ~ Areas of Trapezoids, Rhombuses, and Kites!! L.T.#1: Be able to find areas of trapezoids! L.T.#2: Be able to find areas of rhombuses and kites! Quick Review: Find the value of each variable!

  7. Base1 Height Leg Leg Base2 10 in. 12 m 4 in. 10 m 7 in. 20 m Recall: The height of a trapezoid is the ______________ distance between the bases. Area of a Trapezoid: Find each area. Don’t forget your units!

  8. 12 m 60° 6 m 6 m 6 m 45° 4 ft Find the area of each trapezoid!

  9. Are trapezoids in the real world? The border of Arkansas resembles a trapezoid with bases 190 mi and 250 mi, and height 242 mi. Approximate the area of Arkansas. The border of car window resembles a trapezoid with bases 20 in. and 36 in., and height 18 in. Approximate the area of the window.

  10. Recall: Kite: 2 pairs __________ sides , 0 pairs ___________ sides || Rhombus: ______ sides  d1 d1 d2 d2 W X 5 B 12 3 2 A 5 5 12 3 Z Y C D Area of a Kite or Rhombus: Find each area.

  11. 10 15 45° 12 Find the area of each kite or rhombus!

  12. L Z O M N Areas of Circles and Sectors!! L.T.: Be able to find the area of circles, sectors, and segments of circles!! Quick Review: • Name the following from circle Z. • Minor arc: • Major arc: • Semicircle: • Radius: • Diameter:

  13. 14 in. 10 in. 12 in. B A O Area of a Circle! Find the area of each circle. Leave answers in terms of π. • More Vocab: • ________ of a circle: • _________ of a circle: region bounded by an arc and the two radii touching its endpoints region bounded by an arc and the segment joining its endpoints

  14. A Z 20 cm B D C 72° Finding AREA of a sector! Find the area of each sector. Leave answers in terms of π. • Sector CZD • Sector BZC • Sector BZA

  15. 120° 10 in. 24 ft Finding AREA of a segment! • Find the area of the sector. • Find the area of the triangle. • Subtract. Find the area of each shaded region. Leave answers in terms of π.

  16. More Areas! Find the area of the circle, sector BZD, and the shaded segment. Leave answers in terms of π. A Z 6 m B D 90°

  17. 15 cm 10 in. Challenge Problems! Find the area of each shaded region. Leave answers in terms of π.

  18. Did we meet the target? L.T.: Be able to find the area of circles, sectors, and segments of circles!! Prove It! Get started on the HW!

  19. 12 30° x x 45° y y 8 60° x y x y Review:Find the value of each variable!

  20. Section 11.4 ~ day 1 Areas of Regular Polygons!! L.T.: Be able to find measures of angles in polygons! Quick Review: What is a “regular” polygon? • New Vocab: • ______: • ______: • ________: center of the circle circumscribed about the regular polygon distance from the center to a vertex perpendicular distance from the center to a side

  21. 1 1 2 2 Finding Angle Measures! Find the measure of each numbered angle. 3 4 3 What would be the measure of each central angle in a nonagon? In a 12-gon? In a 36-gon?

  22. 1 1 2 2 Finding Angle Measures! Find the measure of each numbered angle. 3 3

  23. 3 1 2 Did we meet the target? L.T.: Be able to find measures of angles in polygons! Prove It! On your TICKET OUT, write the measure of each numbered angle!

  24. 1 12 2 30° x x 45° y y 1 2 4 3 3 Review: Find the value of each variable!

  25. 6 m Section 11.4 ~ day 2 Areas of Regular Polygons!! L.T.: Be able to find the areas of regular polygons! Area of any Regular Polygon:

  26. Find the area of each regular polygon. Don’t forget your units! Find the area of a regular heptagon with side length 5 cm and apothem 8 cm.

  27. 5 m Find the area of each regular polygon. Don’t forget your units! Find the area of a regular nonagon with side length 4.7 in. and apothem 6.5 in.

  28. Did we meet the target? L.T.: Be able to find the areas of regular polygons! Prove It! Find the area of a regular hexagon with side length 8 cm and apothem cm.

  29. y x 30° x 5 45° 12 1 5 2 3 Warm-up: Find the value of each variable! Find the measures of each angle! Find the area!

  30. Section 11.4 ~ day 3 Areas of Regular Polygons!! L.T.: Be able to find the areas of regular polygons using special right triangles! The next step: Find the measure of each central angle, and then find the area of the regular hexagon!

  31. Find the area of each regular polygon!

  32. Find the area of each regular polygon!

  33. Thinking outside the box . . . A regular hexagon has perimeter 120 m. Find its area.

  34. Un-bee-lievable! Did you know that when bees make honeycomb, each cell is a regular hexagon? Since we are craving some sweet honey, we break off the piece of honeycomb below. But before we extract the honey, we think it would be pretty SWEET to calculate the total area of our honeycomb. We measure that the radius of each cell is 1 cm.

More Related