530 likes | 670 Views
Interconnection Networks. Charles E. Leiserson 6.896 Theory of Parallel Systems March 29, 2004. “Ideal” Parallel Computer. P+M. P+M. P+M. P+M. P+M. P+M. P+M. P+M. P. M. P. M. P. M. …. …. P. M. “Ideal” Parallel Computer. “Ideal” Parallel Computer. “Ideal” Parallel Computer.
E N D
Interconnection Networks Charles E. Leiserson 6.896 Theory of Parallel Systems March 29, 2004
“Ideal” Parallel Computer P+M P+M P+M P+M P+M P+M P+M P+M
P M P M P M … … P M “Ideal” Parallel Computer
Hypercube d = 0 N = 1 d = 1 N = 2 d = 2 N = 4 d = 3 N = 8 d = 4 N = 16
Hypercube 110 111 010 011 100 101 000 001
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 Butterfly (FFT) Network 0 1 2 0
Routing on a Butterfly 0 1 2 0 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 Tree in Butterfly 0 1 2 0
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 Tree in Butterfly 0 1 2 0
Decomposing a Beneš Network n/2 Beneš n/2 Beneš
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
0 5 1 0 2 7 3 4 6 4 5 2 6 3 7 1 Routing on a Beneš Network
5 0 0 1 7 2 4 3 4 6 2 5 3 6 1 7 Routing on a Beneš Network
Bitonic Sorting Network Hypercube connections!