1 / 21

A Fast System for Dropcap Image Retrieval

A Fast System for Dropcap Image Retrieval. Mathieu Delalandre and Jean-Marc Ogier L3i, La Rochelle University, France mathieu.delalandre@univ-lr.fr. Short CV. Short CV. Personal Information Mathieu Delalandre, 32 years old, Married Academic Degrees

thuong
Download Presentation

A Fast System for Dropcap Image Retrieval

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Fast System for Dropcap Image Retrieval Mathieu Delalandre and Jean-Marc Ogier L3i, La Rochelle University, France mathieu.delalandre@univ-lr.fr

  2. Short CV

  3. Short CV • Personal Information • Mathieu Delalandre, 32 years old, Married • Academic Degrees • 1995-1998 Lic.Sc In Industrial Computing Rouen University, France • 1998-2001 M.Sc in Computer Science Rouen University, France • Research Experiences (5 years, Graphics Recognition) • 04/01-09/01 Master PSI Laboratory (Rouen, France) • 10/01-04/05 PhD PSI Laboratory (Rouen, France) • 05/05-09/05 Post-doc SCSIT (Nottingham, England) • 10/05-10/06 Post-doc L3i Laboratory (La Rochelle, France) • 11/06-12/06 Post-doc PSI Laboratory (Rouen, France) • 01/07-12/09 Post-doc CVC (Barcelone, Spain) mais aussi des bandeaux, portraits, armoiries, fleurons, marques …

  4. Introduction - Old books - Old graphics retrieval - Our problem

  5. dropcap figure Alciati (1511) Bartolomeo (1534) Laurens (1621) headline headline • Old books • - Old graphics retrieval • Our problem IntroductionOld books • Old books of XV° and XVI° centuries • Samples • Example of digitized database (BVH, CESR Tours) • Old Graphics

  6. Indexing Retrieval Image Database Index Manual Index Extraction Comparison Query letter (c) topic (vegetal) pattern (cross) • Old books • - Old graphics retrieval • Our problem IntroductionOld graphics retrieval • System overview • General architecture • Samples Pareti’05 Graphics style Zip law Uttama’05 Document layout MST • Retrieval criterion Baudrier’05 Sub image Hausdorff distance Bigun’96 Stroke image Radiogram orientation

  7. Vascosan 1555 Marnef 1576 Class 1 Class 2 Class 3 1555-1578 Printing house tampon printing 1511-1542 Wood plug (bottom view) exchange copy 1531-1548 1497-1507 • Old books • - Old graphics retrieval • Our problem IntroductionOur problem (1/2) • Context • MAsse de DOnnées issues de la Numérisation du patrimoiNE (MADONNE) Project • Bibliothèques Virtuelles Humanistes (BVH) du Centre d’Etudes Supérieures de la Renaissance (CESR) • Wood Plug Tracking

  8. Image Database descriptors Formatting Compression Centering and Comparison fast local complex global Query R1 R2 R3 • Old books • - Old graphics retrieval • Our problem IntroductionOur problem (2/2) • Problem features • No scaled, no oriented • Noise • Offset • Complexity • Accuracy • Scalability • Descriptor choice To image [Gesu’99] • Template matching, Hausdorff distance • no scaled and orientation invariant • global (scene) To scalar [Loncaric’98] • Hough, Radon, Zernike, Hu, Fourrier • Scaled and orientation invariant • fast • local

  9. Formatting Compression Centering and Comparison Our system

  10. Expertise query analysis Files 2803 Base QUEID Size 377.7 Mp Model gray and colour charts Formats Jpeg and Tiff Diagnostic Formatting Compression Packbits and Jpeg Format Resolutions ?; from 72 to 450 dpi Compression Centering and Comparison Files 2038 Size 279.7 Mp Model gray Formats Tiff Compression Uncompress Resolutions 250 to 350 Our systemFormatting • Digitalization problems [Lawrence’00] • Problem sources • Several image providers • Several digitalization tools • Length of process • Human supervised • … • QUEID « QUery Engine on Image Database » • OLDB (Ornamental Letters Database) • Before (oldb.jpg) • After

  11. 0.95 0.88 Formatting 0.75 Compression Centering and Comparison image foreground both background Our systemCompression • OLDB results • Fixed threshold binarisation • Both RLE • Run based compression • Run Length Encoding (RLE) • Compression rate • RLE Types

  12. x1 x1 x1 x1 Size k.run Size k.pixel Time s Time s line (y) image 1 Formatting Min Min 1.1 7.74 176.67 22.32 Mean Mean 15.5 137.7 337.06 41.68 line (y+dy) image 2 Max Max 87.8 600.8 903.62 137.06 Compression Centering and Comparison x x2 x2 x2 x2 x2 pointeur stack image database query image Our systemCentering and comparison • OLDB results • Centering • Comparison while x2 x1 handle image 2 while x1 x2handle image 1

  13. In progress

  14. query 1st Level 2sd Level 2 1 In progress • Our problem • Current time :  40 s • Wished time : < 4 s • First system • Level 1 : image sizes • Level 2 : black, white pixels • Level 3 : RLE comparison To use a system approach To use a lossless compression • Selection algorithm • Key idea Speed if 1 - 2 < 0 push x, cluster while1 - 2 < 0 next Depth

  15. Depth % Min 4% Mean 24% Max 59% In progress • OLDB results • Run based signature • To decrease variability To add a level To work on selection

  16. Query Same plug 0.19470.25170.34850.3616 0.3819 0.4064 Bench1 Bench2 Bench2 Next plug To produce control retrieve 0.4109 0.4209 Base Labels IHM Retrieve engine display driven labelling In progress • Query example • Performance evaluation • Criterion ? • Scalability • Accuracy • Time processing Benchmark system

  17. Conclusions and perspectives

  18. Conclusions et perspectives • Conclusions • Dropcap image retrieval « wood tracking » • Formatting image database (QUEID) • Fast approach, two features • RLE comparison (7 to 9) • Top-down strategy (2 to 20) • Results  10 s for 2000 images (300 Mo) • Perspectives • Working on RLE signature • Benchmark system for performance evaluation

  19. Bibliography

  20. Bibliography • J. Bigun, S. Bhattacharjee, and S. Michel. Orientation radiograms for image retrieval: An alternative to segmentation. In International Conference on Pattern Recognition (ICPR), volume 3, pages 346-350, 1996. • V. D. Gesu and V. Starovoitov. Distance based function for image comparison. Pattern Recognition Letters (PRL), 20(2):207-214, 1999. • S. Loncaric. A survey of shape analysis techniques. Pattern Recognition (PR), 31(8):983-1001, 1998. • R. Pareti and N. Vincent. Global discrimination of graphics styles. In Workshop on Graphics Recognition (GREC), pages 120-128, 2005. • S. Uttama, M. Hammoud, C. Garrido, P. Franco, and J. Ogier. Ancient graphic documents characterization. In Workshop on Graphics Recognition (GREC), pages 97-105, 2005. • E. Baudrier, G. Millon, F. Nicolier, and S. Ruan. A fast binary-image comparison method with local-dissimilarity quantification. In International Conference on Pattern Recognition (ICPR), volume 3, pages 216- 219, 2006.

  21. Thanks …

More Related