1 / 41

Near-Optimal Algorithms for Unique Games

Near-Optimal Algorithms for Unique Games. Yury Makarychev. Moses Charikar. Konstantin Makarychev. Princeton University. 8. (. ). d. 2. 1. 3. 3. 1. 7. +. ´. x. x. m. o. 1. 4. >. >. >. (. ). d. 1. 6. 4. 1. 7. +. <. ´. x. x. m. o. 3. 2. >. :. :. :. >. >.

thuong
Download Presentation

Near-Optimal Algorithms for Unique Games

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Near-Optimal Algorithms for Unique Games Yury Makarychev Moses Charikar Konstantin Makarychev Princeton University

  2. 8 ( ) d 2 1 3 3 1 7 + ´ x x m o 1 4 > > > ( ) d 1 6 4 1 7 + < ´ x x m o 3 2 > : : : > > ( ) d : 5 3 9 1 7 + ´ x x m o 1 9 Example • Linear equations mod p, two var’s per equation. Maximize # of satisfied equations.

  3. Unique Games

  4. Unique Games Permutations

  5. Unique Games

  6. Unique Games

  7. Unique Games

  8. Unique Games

  9. Unique Games Conjecture • Unique Games Conjecture [Khot’02] • instance where 1-fraction of constraints is satisfiable • NP-hard to satisfy even fraction • for every positive constants  and , 9 sufficiently large k. • Used to prove many hardness results

  10. Hardness Results Assuming UGC • Max Cut • Vertex Cover • Min 2 CNF Deletion • Multicut • Sparsest Cut • Coloring 3-colorable graphs Match algorithmic results

  11. p = 2 1 5 ( ( = ) ) k l O 1 1 ¡ " o g " p ( ) 3 l O 1 ¡ " o g n ; p ( ) [ ] l O G T 1 ( ) ¡ l O 1 ¡ " o g n " o g n Approximation Algorithms Assume 1- fraction is satisfiable. • Random Assignment: 1/k. • Andersson, Engebretsen, Hastad ’01, slightly better than random for lin. eq. • Khot ’02, SDP based algorithm, • Trevisan ’05, SDP based alogrithm, • Gupta and Talwar ’05, LP based,

  12. = l k 1 1 0 c o g = 2 1 5 ( ) p k O 1 = ( ) ¡ 2 1 ¡ ¡ ¡ ( ) l k O " 1 " " k k ¡ " o g Our results • Algorithms cover the entire range of . Our Prior

  13. = = = l l k k 1 1 1 o o g g n » = = l k 1 1 1 0 ¡ = o g n k l k » o g Comparison For what  does the algorithm satisfy a constant fraction of constraints? Assume k ~ log n.

  14. " ¡ p ( ) k l k O 1 ¡ ¡ 2 o r " o g " = = ( ) 4 9 ¡ ¡ + " " o " k k Near Optimality • Khot, Kindler, Mossel and O'Donnell showed that even a slight improvement of our results refutes the UGC. • Khot and Vishnoi constructed an integrality gap instance:

  15. Roadmap Integer Program Semidefinite Relaxation Uniform Case Non-uniform Case Conclusions

  16. u v u u u v v v 1 2 3 1 2 3 Integer Program

  17. u v u u u u v v v v = ( ) i 3 1 2 1 3 2 i ¼ u v Integer Program 0 1 1 0 0 0 we want

  18. 1 X u v 2 j j 0 ¡ u v = ( ) i i ¼ 2 u v u u u v v v i 3 2 1 2 3 1 Integer Program 0 1 0 0 1 0 0 0 0

  19. 1 X u v 2 j j 1 ¡ u v = ( ) i i ¼ 2 u v u u u v v v i 3 2 1 2 3 1 Integer Program 0 1 0 1 0 0 1 0 1

  20. Ã ! k 1 X X 2 j j i ¡ m n u v ( ) i [ ] f g i 8 8 k V i 0 1 ¼ 2 2 2 u u 2 u v i ; i ( ) 1 E 2 = u v ; 8 8 6 V i j 0 2 ¢ u u u = = i j k X 2 8 V 1 2 u u = i i 1 = Integer Program

  21. Ã ! k [ ] h i 8 8 k 6 V 1 i j i j 0 2 2 u u u = = X X i j 2 ; ; ; j j i ¡ m n u v ( ) i i ¼ k 2 u v X i ( ) 1 2 E j j 2 8 V = 1 u v 2 u u ; = i i 1 = Semidefinite Program

  22. [ [ ] ] P P i i j r x r x x » » = = = u u u ; Ã ! k [ ] h i 8 8 k 6 V 1 i j i j 0 2 2 u u u = = X X i j 2 ; ; ; j j i ¡ m n u v ( ) i i ¼ k 2 u v X i ( ) 1 2 E j j 2 8 V = 1 u v 2 u u ; = i i 1 = Semidefinite Program

  23. [ [ ] ] P P i i j r x r x x » » = = = u u u ; Ã ! k [ ] h i 8 8 k 6 V 1 i j i j 0 2 2 u u u = = X X i j 2 ; ; ; j j i ¡ m n u v ( ) i i ¼ k 2 u v X i ( ) 1 2 E j j 2 8 V = 1 u v 2 u u ; = i i 1 = 2 ( ) [ ] h i j j 8 k E i 0 · · 2 2 u v u v u ( ) i i i ¼ ; ; u v Semidefinite Program

  24. u v v u k k 2 2 v 1 u 1 Intuition For each vertex, we have an orthogonal system of vectors. For adjacent vertices the vectors are close. Our goal is to pick one vector for each vertex. Green vectors correspond to vertex u. Red vectors correspond to vertex v.

  25. Uniform Case

  26. 1 p k ~ 2 j j ¢ u u = i i u = i k Intuition: Uniform Case • Assume all vectors have the same length: • Normalize vectors:

  27. ~ ~ u u k i g ~ u j Algorithm: Uniform Case Pick a random Gaussian vector g.

  28. h i Z ~ g u = i u ; i ~ ~ u u k i g ~ u j Algorithm: Uniform Case For each vertex u, project g on ui:

  29. ( f ) = g k P S Z Z i 1 ¸ ¸ t t r : ~ ~ = = u u u i i u u k i g ~ u j t t Algorithm: Uniform Case For each vertex u, , where the threshold t is s.t.

  30. = h b b l k d f S S S i i i i i i i 1 1 t t t 2 n c e w p r o a y ; e x p e c e s z e o s u u . ( f ) = g k P S Z Z i 1 ¸ ¸ t t r : ~ ~ = = u u u i i u u k i g ~ u j t t Algorithm: Uniform Case For each vertex u, , where the threshold t is s.t.

  31. ~ ~ u u k i g ~ u j t t Algorithm: Uniform Case • Pick at random i from Suand assign xu = i.

  32. p h i k Z ~ ~ ¢ u g u u = = i i i u ; i f g S Z i ¸ t : = u u i Recap • Denote • Pick a random Gaussian vector g. • Project g on ui: . • For each vertex u, . • Pick at random i from Suand assign xu = i. u

  33. p h i k Z ~ ~ ¢ u g u u = = i i i u ; i f g S Z i ¸ t : = u u i Recap • Denote • Pick a random Gaussian vector g. • Project g on ui: . • For each vertex u, . • Pick at random i from Suand assign xu = i. u S S

  34. p h i k Z ~ ~ ¢ u g u u = = i i i u ; i f g S Z i ¸ t : = u u i Recap • Denote • Pick a random Gaussian vector g. • Project g on ui: . • For each vertex u, . • Pick at random i from Suand assign xu = i. u S S

  35. j j S S \ u v j j S S \ ¼ u v j j j j S S u v Uniform Case: Analysis • Assume, for brevity, uv = id. • What is the probability that the constraint for the edge (u, v) is satisfied? • Expected sizes of Su and Sv are 1. v u S S S S

  36. ( ) h i Z Z Z Z S S i c o v u v ¸ ¸ t t = \ i i 2 S S u v ; ; : i i \ u v u v i i u v Expected size of . • if and • We know the joint ditribution of Zui and Zvi: each is a standard normal variable; their covariance is So we can compute the desired probability.

  37. " " u v µ ¶ µ ¶ j j 1 S S ¡ 2 1 ¡ 2 \ " " u v u v ¼ k j j j j k S S u v Uniform Case: Analysis • The probability that the constraint for the edge (u, v) is satisfied: • Average over all constraints: v u S S S S

  38. Non-uniform Case

  39. [ ] P i r x » = u Non-uniform Case • Need to take lengths of vectors into account. • Should normalize vectors. • Cannot ignore lengths. • Solution: project each vector ui on several Gaussians; # of projections is proportional to |ui|2.

  40. p ( ) l l k O 1 ¡ " o g n o g Conclusion and Open Problems Our algorithm can solve 1-to-d games [CMM’] New algorithm for Unique Games with approximation guarantee Prove or disprove the Unique Games Conjecture

  41. Thank you! Questions?

More Related