1 / 27

Artificial Intelligence Techniques

Artificial Intelligence Techniques. Internet Applications 2. Aims of the session. What are Microdata Are they useful? Introduce the concept of Semantic Web semantic web with ‘small s’ Internal research. Microdata. A way putting meaning (semantics) within existing web content.

tia
Download Presentation

Artificial Intelligence Techniques

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Artificial Intelligence Techniques Internet Applications 2

  2. Aims of the session • What are Microdata • Are they useful? • Introduce the concept of Semantic Web • semantic web with ‘small s’ • Internal research.

  3. Microdata • A way putting meaning (semantics) within existing web content. • HTML5’s Best-Kept Secret • http://www.webmonkey.com/2010/09/microdata-html5s-best-kept-secret/

  4. <section itemscope itemtype="http://data-vocabulary.org/Person"> <dd itemprop="name">Scott Turner</dd> <dd><span itemprop="title">Senior Lecturer</span> <span itemprop="affiliation">University of Northampton</span></dd> <dd itemprop="address" itemscope itemtype="http://data-vocabulary.org/Address"> <span itemprop="street-address">Avenue Campus</span><br> <span itemprop="locality">Northampton</span>, <span itemprop="region">Northamptonshire</span> <span itemprop="postal-code">NN2 6JB</span> <span itemprop="country-name">UK</span> </dd>

  5. <section itemscope itemtype="http://data-vocabulary.org/Person"> • This says the section describes a Person.

  6. <dd itemprop="name">Scott Turner</dd> • Each property of Person is itemprop – In this case the name of the person.

  7. <dditemprop="address" itemscopeitemtype="http://data-vocabulary.org/Address"> <span itemprop="street-address">Avenue Campus</span><br> <span itemprop="locality">Northampton</span>, <span itemprop="region">Northamptonshire</span> <span itemprop="postal-code">NN2 6JB</span> <span itemprop="country-name">UK</span> </dd>

  8. Further reading • http://support.google.com/webmasters/bin/answer.py?hl=en&answer=99170&topic=21997&ctx=topic • http://www.google.com/webmasters/tools/richsnippets • http://www.barryko.com/seo/html5-microdata-schema-generator/

  9. Other approaches

  10. Microformats • <div id="hcard-Scott-J-Turner" class="vcard"> • <span class="fn n"> • <span class="given-name">Scott</span> • <span class="additional-name">J</span> • <span class="family-name">Turner</span> • </span> • <div class="org">University of Northampton</div> • <div class="adr"> • <div class="street-address">St Georges Avenue</div> • <span class="locality">Northampton</span>, • <span class="region">Northamptonshire</span>, • <span class="postal-code">NN2 6JD</span> • <span class="country-name">U.K</span> • </div> • <div class="tel">+44 1604 893028</div>

  11. Examples • hCard: for marking up contact information. • hCalendar: Marking up event information. • XFN: Marking up relationships between people. • Hreview: Marking up reviews.

  12. Illustrative Example • <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/"> • <rdf:Description rdf:about="http://www.computing.northampton.ac.uk"> <dc:title>Scott Turner</dc:title> • <dc:publisher>University of Northampton</dc:publisher> • </rdf:Description> • </rdf:RDF>

  13. RDFa • RDFa, provides a set of XHTML attributes to augment visual data with machine-readable hints

  14. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:foaf="http://xmlns.com/foaf/0.1/" <foaf:PersonalProfileDocument rdf:about=""> <foaf:maker rdf:resource="#me"/> <foaf:primaryTopic rdf:resource="#me"/> </foaf:PersonalProfileDocument> <foaf:Person rdf:ID="me"> <foaf:name>Scott Turner</foaf:name> <foaf:title>Dr</foaf:title> <foaf:givenname>Scott</foaf:givenname> <foaf:family_name>Turner</foaf:family_name> <foaf:mbox_sha1sum>a8428e44d03b8fe2bd3f7860d7d64d229ad71169</foaf:mbox_sha1sum> <foaf:homepage rdf:resource="www.computing.northampton.ac.uk/~scott"/> <foaf:workplaceHomepage rdf:resource="www.computing.northampton.ac.uk/~scott"/></foaf:Person> </rdf:RDF>

  15. Agents • This is has been argued is the real power of the power of semantic web to produce machine-readable Web-content. • Programs collating information form diverse sources.

  16. Definition • “The Semantic Web is a project to create a universal medium for information exchange by putting documents with computer-processable meaning (semantics) on the World Wide Web. Currently under the direction of the Web's creator, Tim Berners-Lee of the World Wide Web Consortium, the Semantic Web extends the Web through the use of standards, markup languages and related processing tools. “ Wikipedia (2006a)

  17. Image taken from Wikipedia (2006a)

  18. Resource Description Framework (RDF) • W3C specification orignally for metadata modelling in XML • Metadata model based on statements about resources, three parts (triples): • Subject:The resource (often in form of URI) • Predicate: aspects of the resource and the relationship between the subject and the object. • Object:property • To read more Wikipedia (2006c)

  19. Ontologies 1 • Typical kind of ontology for Web applications has a taxonomy and a set of interference rules. • Taxonomy defines classes of objects and the relations among them.

  20. Ontologies 2 • Typical kind of ontology for Web applications has a taxonomy and a set of interference rules. • Taxonomy defines classes of objects and the relations among them.

  21. OWL (Web Ontology Language) • A Markup Language for sharing ontologies on the web. • Designed for applications that need machine-readable content not just for humans. • Written in XML • For more information see Wikipedia (2006b)

  22. AI and the semantic web • AI aspects (or weak AI (see Wikipedia (2006a)) comes from the machine-readable aspects. • Machines ability to perform well defined tasks and well-defined data, for a well-defined problem (Wikipedia 2006a) • Is this AI?

  23. AI and the semantic web • AI aspects (or weak AI (see Wikipedia (2006a)) comes from the machine-readable aspects. • Machines ability to perform well defined tasks and well-defined data, for a well-defined problem (Wikipedia 2006a) • Is this AI?

  24. Internal research • An ex-MSc student has recently submitted a paper on something similar. • presented at a conference May 2011.

  25. Using the link below: • http://inspector.sindice.com/ • Investigate several sites including the one below: • http://www.computing.northampton.ac.uk/~scott/

  26. References and Bibliography • Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web Scientific American pg 35-43 • Wikipedia (2006a) Semantic Web [online] http://en.wikipedia.org/wiki/Semantic_Web Accessed on: 11/1/2007 • Wikipedia (2006b) Web Ontology Language http://en.wikipedia.org/wiki/Web_Ontology_Language Accessed on 11/1/2007 • Wikipedia (2006c) Resource Description Framework http://en.wikipedia.org/wiki/Resource_Description_FrameworkAccessed on 11/1/2007

  27. Jones MT (2005) AI Application Programming 2nd Edition, ISBN 1-58450-421-8 pp 387-438. • Segaran (2007) Programming Collective intelligence ISBN 0-596-52932-5 • Wikipedia (NA) Software Agents http://en.wikipedia.org/wiki/Software_agent [online] Accessed on 16/03/2007.

More Related