200 likes | 212 Views
Learn about pH indicators, properties, theories, and reactions of acids and bases. Explore Arrhenius and Bronsted-Lowry theories, amphoteric substances, conjugate acid-base pairs, and neutralization reactions.
E N D
pH indicators • pH indicators are valuable tool for determining if a substance is an acid or a base. • The indicator will change colors in solution.
Things to use… • pH meter will indicate the numeric value of acid or base based on the pH range • Chemical indicators: phenolphthalein, universal indicator… • Natural indicators: poinsettia, red cabbage juice…
ACIDS Have a sour taste Change the color of many indicators Are corrosive (react with metals) Neutralize bases Conduct an electric current BASES Have a bitter taste Change the color of many indicators Have a slippery feeling Neutralize acids Conduct an electric current Properties of Acids and Bases
Arrhenius Theory of Acids and Bases: an acid contains hydrogen and ionizes in solutions to produce H+ ions: HCl H+(aq) + Cl-(aq)
Arrhenius Theory of Acids and Bases: a base contains an OH- group and ionizes in solutions to produce OH- ions: NaOH Na+(aq) + OH-(aq)
Neutralization • Neutralization: the combination of H+ with OH- to form water. H+(aq) + OH-(aq) H2O (l) • Hydrogen ions (H+)in solution form hydronium ions (H3O+)
In Reality… H+ + H2O H3O+ Hydronium Ion (Can be used interchangeably with H+)
Commentary on Arrhenius Theory… One problem with the Arrhenius theory is that it’s not comprehensive enough. Some compounds act like acids and bases that don’t fit the standard definition.
Bronsted-Lowry Theory of Acids & Bases: • An acid is a proton (H+) donor • A base is a proton (H+) acceptor
for example… Proton transfer HCl(aq) + H2O(l) H3O+(aq) + Cl-(aq) Base Acid
Water is a proton donor, and thus an acid. another example… CONJUGATE BASE ACID NH3(aq) + H2O(l) NH4+ (aq) + OH- (aq) BASE CONJUGATE ACID Ammonia is a proton acceptor, and thus a base
Amphoteric Substances A substance that can act as both an acid and a base (depending on what it is reacting with) is termed amphoteric. Water is a prime example.
Conjugate acid-base pairs • Conjugate acid-base pairs differ by one proton (H+) A conjugate acid is the particle formed when a base gains a proton. A conjugate base is the particle that remains when an acid gives off a proton.
Examples: In the following reactions, label the conjugate acid-base pairs: • H3PO4 + NO2- HNO2 + H2PO4- • CN- + HCO3- HCN + CO32- • HCN + SO32- HSO3- + CN- • H2O + HF F- + H3O+ acid base c. acid c. base base acid c. acid c. base acid base c. base c. acid c. base c. acid base acid
Strength of Acids and Bases • A strong acid dissociates completely in sol’n: • HCl H+(aq) + Cl-(aq) • A weak acid dissociates only partly in sol’n: • HNO2 H+(aq) + NO2-(aq) • A strong base dissociates completely in sol’n: • NaOH Na+(aq) + OH-(aq) • A weak base dissociates only partly in sol’n: • NH3(aq) + H2O(l) NH4+(aq) + OH-(aq)
Acid-Base Reactions • Neutralization reactions: reactions between acids and metal hydroxide bases which produce a salt and water. • H+ ions and OH- ions combine to form water molecules: • H+(aq) + OH-(aq) H2O(l)