1 / 17

Pulping and Bleaching PSE 476/Chem E 471

Pulping and Bleaching PSE 476/Chem E 471. Lecture #18 Bleaching Fundamentals and Bleaching Sequences. Bleaching Sequences Agenda. Bleaching chemistry fundamentals Cationic mechanisms Radical mechanisms Anionic mechanisms Bleaching chemicals nomenclature rules Bleaching Conditions

tiana
Download Presentation

Pulping and Bleaching PSE 476/Chem E 471

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pulping and BleachingPSE 476/Chem E 471 Lecture #18 Bleaching Fundamentals and Bleaching Sequences PSE 476: Lecture 18

  2. Bleaching SequencesAgenda • Bleaching chemistry fundamentals • Cationic mechanisms • Radical mechanisms • Anionic mechanisms • Bleaching chemicals nomenclature rules • Bleaching Conditions • Typical Sequences PSE 476: Lecture 18

  3. Bleaching: Basic Chemical Principles • Bleaching reactions can be divided into anionic, cationic (?) and radical reactions. • There are a multitude of different reactions that occur during bleaching. • We are going to cover the chemistry in very generic terms. PSE 476: Lecture 18

  4. Bleaching Mechanisms Joseph Gierer, a well known lignin chemist, has taken the very complicated bleaching reactions and classified them by a number of different categories. PSE 476: Lecture 18

  5. Cationic Reactions • Cationic reactions occur under acidic conditions. • Reactive species: • Chlorine: Cl+ • Peroxy acids: OH+ • Ozone: O3 • How can these species be cations??????? • Electrophillic addition reaction: PSE 476: Lecture 18

  6. Cationic Reactions: Generalities (2) The most important reaction is electophillic substitution onto the aromatic ring. • There can be multiple substitutions. • Substitution at #1 ring position can later cause side chain elimination. • Substitution at #3 or #4 position can lead to the formation of an ortho quinone. • There is no ring cleavage. PSE 476: Lecture 18

  7. Radical Reactions: Generalities • Nobody adds free radicals to a bleaching reaction; they are formed from other additives. • Examples: • Chlorine: Cl• (chlorine radical) • Oxygen: -O2• (superoxide radical) HO• (hydroxyl radical) • Many free radicals react very rapidly with lignin so they are good except that they degrade carbohydrates very rapidly so they are also bad. PSE 476: Lecture 18

  8. Radical Reactions: Generalities (2) • Pathways are pH dependent. • Free radicals couple with aromatic rings. • This and further mechanisms affected by free versus etherified phenolic hydroxyls. • Results in generation of free radical structures. • These structures can undergo additional substitutions and oxidation reactions. • Generation of ortho quinones. • Ring opening reactions. • Ring substitution by bleaching agent. • Some side chain cleavage. • Carbohydrates will react and are degraded. PSE 476: Lecture 18

  9. Radical Reactions: Generalities Ring Cleavage Ortho Quinones Side Chain Cleavage Ring Substitution PSE 476: Lecture 18

  10. Anionic Reactions:Generalities • These are alkaline bleaching reactions. • ClO-, HOO -added reagents • Other species generated: . O2-, . O-, etc. • These chemicals are involved in nucleophilic attacks. • Target of attacks: carbonyls and conjugated carbonyls. • Products of reactions: • Ring opening: Dicarboxylic acids • Side chain cleavage PSE 476: Lecture 18

  11. Anionic Reactions: Generalities PSE 476: Lecture 18

  12. Bleaching SequencesNomenclature Rules (1) • Nomenclature rules found in TAPPI Information Sheet TIS 0606-12. • Bleaching sequences are described by capital letters which describe the chemicals used. • C = chlorine, H = hypochlorite, D = chlorine dioxide, O = oxygen (with NaOH), P = peroxide, Z = ozone, Y = hydrosulfite, X = enzymes, E = NaOH, Q = chelants, Paa = peracetic acid • Letter represents each chemical followed by a washing step. • CED = Cl2/wash/NaOH extraction/wash/ ClO2/wash PSE 476: Lecture 18

  13. Bleaching SequencesNomenclature Rules (2) • If washing is omitted, a parenthesis is added around the steps. • C(EO)D = Cl2 /wash/NaOH/Oxygen/wash/ClO2/wash • If chemicals are added simultaneously, the letters are placed in parenthesis separated by a + sign. C(E+O)D = Cl2 /wash/NaOH+Oxygen/wash/ClO2/wash • People will also list this as CE/OD • Sometimes small amounts of chemicals are added to fortify a step. The additives are typically listed as subscripts: EO or EP or EOP • Subscripts are also used to designate differences in conditions (ie temp, pH, etc): D0, D1, D2 PSE 476: Lecture 18

  14. Differences in Chlorine Dioxide Stages PSE 476: Lecture 18

  15. Bleaching SequencesTypical Bleaching Sequence (1990) PSE 476: Lecture 18

  16. Bleaching SequencesTraditional Sequences PSE 476: Lecture 18

  17. Bleaching SequencesSome Current (2001) Sequences PSE 476: Lecture 18

More Related