150 likes | 260 Views
How to overcome free energy barriers in grandcanonical simulations. Peter Virnau , M. M üller, B. Mognetti, L. Yelash, K. Binder. Leipzig, 11/2007. Overview & Credits. Grandcanonical Simulations ( How to determine critical points?)
E N D
How to overcome free energy barriers in grandcanonical simulations Peter Virnau, M. Müller, B. Mognetti, L. Yelash, K. Binder Leipzig, 11/2007
Overview & Credits Grandcanonical Simulations • (How to determine critical points?) • How to overcome free energy barriers? Successive Umbrella Sampling • (How to calculate interface tension?) Applications • Systematic approach to model and coarse-grain small molecules (Noble gases, Alkanes, CO2, benzene) G.M. Torrie and J.P. Valleau, J. Comput. Phys. 23, 187 (1977) B. Berg and T. Neuhaus, Phys. Rev. Letters 68, 9 (1992) F. Wang and D.Landau, Phys. Rev. Letters 86, 2050 (2001)
Grandcanonical Simulations liquid P(n) gas particle number n Problem: Regions of small probability (free energy barriers) algorithms-> applications
Free energy barriers P(n) particle number n (-H(n)/kT) modify Hamiltonian: H´(n) = H(n) + kT w(n) weight function: ideal:w(n)=ln P(n) good estimate for w(n) ->“flat” histogram algorithms-> applications
How to generate a good w(n) ? P(n) particle number n 1. Histogram-reweighting (extrapolate data from previous simulation) -> limited range, tedious 2. Adjust w(n) during simulation i.e., Wang-Landau (-> violates detailed balance) algorithms-> applications
Successive umbrella sampling P(n) particle number n Idea: - simulate windows successively - generate w(n) for the next window by extrapolation Adv: - works everywhere - efficient P. Virnau and M.Müller, J. Chem. Phys. (2004) algorithms-> applications
Successive umbrella sampling Analysis:no violation of detailed balance -> errors are controlled and can be calculated: Errors are independent of window size single window: t = O(n2) window size one: t = n O(1) = O(n)??? D 0 t n t = n O(n) = O(n2) algorithms-> applications
Noble gases • Potential:Lennard-Jones • Strategy: • Equate critical points of simulation and experiment • e and s How well is the rest of the diagram described? algorithms->applications
Alkanes Mapping3CH2=1 bead Potential Lennard-Jones + FENE algorithms->applications
Carbon dioxide Mapping: CO2= 1 LJ bead + quadrupole moment algorithms->applications
Benzene Mapping: C6H6= 1 LJ bead + quadrupole moment algorithms->applications
Take home messages How to overcome free energy barriers? Successive umbrella sampling Modeling Equate critical points of simulation and experiments to obtain simulation parameters very good agreement with phase change data
Critical points Binder cumulants U4 = <M4>/<M2>2 M = r-<r> algorithms-> applications
Free energy DF/kT particle number n Relation btw. P(n) und F: F = -kT ln(Zcan) = -kT lnP(n) + const. Interface tension: g = DF/2L2 algorithms-> applications