250 likes | 502 Views
Introduction to functional ceramic materials. Structure, properties, preparation and applications. Vincenzo Buscaglia Istituto per l’Energetica e le Interfasi Consiglio Nazionale delle Ricerche Via De Marini 6, 16149 Genoa v.buscaglia@ge.ieni.cnr.it. What a ceramic is ?
E N D
Introduction to functional ceramic materials. Structure, properties, preparation and applications Vincenzo Buscaglia Istituto per l’Energetica e le Interfasi Consiglio Nazionale delle Ricerche Via De Marini 6, 16149 Genoa v.buscaglia@ge.ieni.cnr.it
What a ceramic is ? • From Greek word “keramos” (pottery, potter’s clay) • Inorganic nonmetallic materials obtained by the action of heat and subsequent cooling • Polycrystalline materials, single phase or multiphase (composites), sometimes with an amorphous component (glass) • Traditional ceramics • Whitewares: tableware, cookware, sanitary ware, etc. • Refractories (kiln and furnace linings for steel and glass industry) • Structural clay products (floor & roof tiles, bricks, etc.) • Fabricated from clay, quartz, feldspar (earthenware) and kaolin (porcelain) • Technical/advanced ceramics • Structural ceramics (mechanical properties: strength, toughness, hardness, creep resistance) • Functional ceramics (electric, magnetic, optical properties)
Ceramic Si3N4 bearing parts Two Kyocera ceramic knives (Y:ZrO2) Ceramic body armour plates (Al2O3, SiC) Radial rotor made from Si3N4 for a gas turbine engine The Porsche Carrera GT's silicon carbide disk brake Structural ceramics
Thick (left) and thin (right) substrates (alumina) Pressed and extruded parts (alumina, mullite, zirconia) Microwave dielectric components Ferrites cores
Low Temperature Co-fired Ceramics (LTCC) Ceramic Multilayer Substrates Pyroelectric Infrared sensor (PZT) Monolithic Multilayer Ceramic Capacitors (modified BaTiO3) SAW filter (SIO2, LiNbO3, LiTaO3) Ceramic resonators (SiO2, PZT, BaMg1/3Ta2/3O3) Thermistors (NTCR: spinels; PTCR: modified BaTiO3) Ceramic filters (BaMg1/3Ta2/3O3, Zr(Sn,Ti)O4) Cheap ferrite beads (hexaferrites BaFe12O19) Multilayer piezoelectric ceramic actuators for diesel injection system (PZT – PbZrxTi1-xO3) Multilayer technology used for higher performances and device miniaturization
Multilayer ceramic capacitors: most widely used ceramic components in ME
Fully dense 99% Al2O3, transparent Partially porous 99% Al2O3, transparent Liquid-phase sintered 96% Al2O3 with secondary glassy phase Microstructure of ceramics Glossary: grains, grain boundaries, pores, secondary phases, domain walls, relative density, grain size, grain size distribution, texture, etc. Further details: Classification&Microstructure.ppt
Outlook of the course • Introduction. Why a course on functional ceramics? (Introduction.ppt) • Processing of ceramic materials: forming and sintering (Processing.ppt). • Structure and properties of grain boundaries. Nanoceramics (GrainBoundaries.ppt). • Ceramics for electronics: ferroelectric and piezoelectric ceramics, dielectrics with high dielectric constants (BaTiO3, PbZrxTi1-xO3, (K,Na)NbO3) • (Ferroelectrics.ppt, Piezoelectrics.ppt) -Multilayer ceramic capacitors. Miniaturization of devices and related issues. -Piezoelectric actuators and transducers. -Lead-free materials. • Multiferroic materials (BiFeO3, magnetoelectric composites): a challenge for materials science. (Multiferroics.ppt) • Ceramics for energy: (SOFC.ppt, MIEC.ppt) -Ionic and mixed high-temperature conductors (Y:ZrO2, Gd:CeO2, (La,Sr)MnO3) -Solid-oxide fuel cells. -Ceramic membranes for gas separation.
Required background • General background in physics, chemistry and materials science. • Knowledge of most common crystal structures (fluorite, spinel, perovskite). • Perovskites.ppt • Defects and defect chemistry in oxides, extended defects, doping, p- and n- type semicondutors, defect chemistry and electrical conductivity. • Defects.ppt • Electric and dielectric properties of crystalline solids: polarization, complex dielectric permittivity, ac dielectric properties, impedance, dielectric relaxation. • Dielectrics.ppt • Fundamentals of solid-state magnetism
Suggested readings • Books • A.J. Moulson & J.M. Herbert, Electroceramics, Chapman & Hall. • W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, John Wiley & Sons. • Review papers • F. Ernst, O. Kienzle and M. Rühle, Structure and Composition of Grain Boundaries in Ceramics, J. Europ. Ceram. Soc.19,665-673 (1999). • S. von Alfthan et al., The Structure of Grain Boundaries in Strontium Titanate: Theory, Simulation and Electron Microscopy, Annu. Rev. Mater. Res.40,557–99 (2010). • G. H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc.82,797–818 (1999). • D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys.61,1267–1324 (1998). • L. Jin, F. Li, S. Zhang, Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures, J. Am. Ceram. Soc.97,1–27 (2014) • A.K. Tagantsev et al., Ferroelectric Materials for Microwave Tunable Applications, J. Electroceramics11, 5–66 (2003). • S. Zhang & F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective, J. Appl. Phys.111,031301 (2012). • J. Rodel et al., Perspective on the Development of Lead-free Piezoceramics, J. Am. Ceram. Soc.92, 1153-1177 (2009) • T. R. Shrout & S. J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT?, J. Electroceram.19,111–124 (2007)
C.A. Randall et al., High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge, J. Electroceramics14,177-191 (2005). • M. Fiebig, Revival of the Magnetoelectric Effect, J. Phys. D.: Appl. Phys.38,R123-R152 (2005) • C.A.F. Vaz et al., Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures, Adv. Mat.22,2900-2918 (2010). • J. van den Brink, D. I. Khomskii, Multiferroicity due to charge ordering, J. Phys.: Condens. Matter20,434217 (2008) • M. Winter & M.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev.104,4245-4269 (2004). • A. J. Jacobson, Materials for Solid Oxide Fuel Cells, Chem. Mater.22,660-674 (2010). • A. Orera & P. R. Slater, New Chemical Systems for Solid Oxide Fuel Cells, Chem. Mater.22,675-690 (2010). • J. Sunarso et al., Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membrane Science320,13–41 (2008) • S. Baumann et al., Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air, J. Europ. Ceram. Soc.33,1251-1261 (2013). • A. Feteira, Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective, J. Am. Ceram. Soc., 92, 967–983 (2009). • W. Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State & Materials Science1,715-731 (1996.) • I. Reaney & D. Iddles, Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks, J. Am. Ceram. Soc.89,2063–2072 (2006).