1 / 31

Computer Science 112

Computer Science 112. Fundamentals of Programming II Binary Search Trees. Recursive Binary Search. def index (target, sortedList): def recurse (first, last): if first > last: return -1 # target not there else :

tierra
Download Presentation

Computer Science 112

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer Science 112 Fundamentals of Programming II Binary Search Trees

  2. Recursive Binary Search def index(target, sortedList): def recurse(first, last): if first > last: return -1 # target not there else: mid = (first + last) // 2 # compute midpoint if sortedList[mid] == target: return mid # found target elif sortedList[mid] > target: return recurse(first, mid – 1) # go left else: return recurse(mid + 1, last) # go right return recurse(0, len(sortedList) – 1)

  3. 34 41 56 63 72 89 95 Call Tree for Binary Search 0 1 2 3 4 5 6

  4. 34 72 89 56 41 95 34 89 72 63 56 41 95 Call Tree for Binary Search 0 1 2 3 4 5 6 4 5 6 0 1 2

  5. 56 34 95 34 41 56 72 89 63 95 34 41 95 56 72 89 72 Call Tree for Binary Search 0 1 2 3 4 5 6 4 5 6 0 1 2 4 6 0 2

  6. 63 41 89 34 56 72 95 Binary Search Tree (BST)

  7. Binary Search Tree (BST) • Ordering principle: • Each item in the left subtree is less than the item in the parent • Each item in the right subtree is greater than the item in the parent

  8. Recursive Search of a BST Node contains(target, node) If the node is None Return False Else if node.data equals the target Return True Else if the target is greater than the data Return contains(target, node.right) Else Return contains(target, node.left)

  9. Minimal Set of BST Operations t.isEmpty() Returns True if empty, False otherwise len(t) Returns the number of items in the tree str(t) Returns a string representation iter(t) Supports a for loop, visiting in preorder item in t True if item is in tree, False otherwise t1 + t2 Returns a new tree with items in t1 and t2 t1 == t2 Equality test for two trees t.add(item) Adds item to the tree t.remove(item) Removes the given item The precondition of remove is that the item is in the tree.

  10. Tree-Specific Operations t.preorder() Returns an iterator for preorder traversal t.inorder() Returns an iterator for inorder traversal t.postorder() Returns an iterator for postorder traversal t.levelorder() Returns an iterator for levelorder traversal t.height() Returns the number of links from the root to the deepest leaf t.isBalanced() Returns True if t.height() < 2 * log2(len(t) + 1) - 1 or False otherwise t.rebalance() Rearranges the nodes to ensure that t.height() <= log2(len(t) + 1)

  11. Using a Binary Search Tree tree = LinkedBST() tree.add("D") tree.add("B") tree.add("A") tree.add("C") tree.add("F") tree.add("E") tree.add("G") print(tree) print("F"in tree) for item in tree: print(item) for item intree.inorder(): print(item) for item intree.postorder(): print(item) for item intree.levelorder(): print(item) forchin ('A', 'B', 'C', 'D', 'E', 'F', 'G'): print(tree.remove(ch))

  12. The LinkedBSTClass from abstractcollectionimportAbstractCollection frombstnodeimportBSTNode classLinkedBST(AbstractCollection): def__init__(self, sourceCollection = None): self._root = None AbstractCollection.__init__(self, sourceCollection) # Tree methods go here

  13. Method contains def __contains__(self, target): """Returns True if target is found or False otherwise.""” def recurse(node): if node isNone: returnFalse elif node.data == target: returnTrue elif node.data > target: return recurse(node.left) else: return recurse(node.right) return recurse(self._root) Several operations call nested helper functions to recurse on nodes

  14. Method contains def __contains__(self, target): """Returns True if target is found or False otherwise.""” def recurse(node): return node != None and / (node.data == target or / (node.data > target and recurse(node.left)) or / recurse(node.right)) return recurse(self._root) Alternatively, for the logically intoxicated . . .

  15. Preorder Traversal defpreorder(self): """Supports a preorder traversal on a view of self.""" lyst = list() defrecurse(node): if node != None: lyst.append(node.data) recurse(node.left) recurse(node.right) recurse(self._root) returniter(lyst) A traversal builds and returns a list of items in the order in which they were visited

  16. iter – First Attempt def__iter__(self): """Supports a preorder traversal on a view of self.""" return self.preorder() The iterator captures a preorder traversal However, this implementation would incur linear running time and linear growth of memory before the caller ever accesses an item

  17. iter – Second Attempt If the tree is not empty Create a new stack Push the root node onto the stack While the stack is not empty Pop the top node and yield its data If the node’s right subtree is not empty Push the right subtree onto the stack If the node’s left subtree is not empty Push the left subtree onto the stack Visits the nodes in preorder, yielding the datum in each node What is the running time and growth of memory?

  18. Adding Items to a BST D New items are always added to the frontier of the tree, as leaf nodes B F G A

  19. Case 1: The Tree is Empty • Set the root to a new node containing the item

  20. Case 2: The Tree Is Not Empty • Search for the proper place for the new node D E B F G A

  21. Case 2: The Tree Is Not Empty • Search for the proper place for the new node D E B F G A

  22. Case 2: The Tree Is Not Empty • Search for the proper place for the new node D B F G E A

  23. Method add defadd(self, item): """Adds item to self.""" # Tree is empty, so new item goes at the root ifself.isEmpty(): self._root = BSTNode(item) # Otherwise, search for the item's spot else: recurse(self._root) self._size += 1 Define a helper function recurse to perform the search for the new item’s place in a non-empty tree

  24. Method add defadd(self, item): """Adds item to self.""" defrecurse(node): # New item is less, go left until spot is found if item < node.data: ifnode.leftisNone: node.left = BSTNode(item) else: recurse(node.left) # New item is >=, go right until spot is found elifnode.rightisNone: node.right = BSTNode(item) else: recurse(node.right) # Tree is empty, so new item goes at the root ifself.isEmpty(): self._root = BSTNode(item) # Otherwise, search for the item's spot else: recurse(self._root) self._size += 1

  25. Method str def __str__(self): def recurse(node, level): s = "" if node != None: s += recurse(node.right, level + 1) s += "| " * level s += str(node.data) + "\n" s += recurse(node.left, level + 1) return s return recurse(self._root, 0) Displays the tree rotated 90° counterclockwise

  26. Adding Items in Best Order tree = LinkedBST() print(">>>>Items in advantageous order:") tree.add("E") tree.add("C") tree.add("D") tree.add("A") tree.add("H") tree.add("F") tree.add("K") print(tree)

  27. Adding Items in Worst Order print(">>>>Items in worst order:") tree = LinkedBST() for i inrange(1, 9): tree.add(i) print(tree)

  28. Adding Items in Random Order print(">>>>Items in random order:") tree = LinkedBST() foriinrange(7): tree.add(randomString()) print(tree)

  29. A A D G G D C B C B E E F F Performance Best Worst

  30. The Shape of the Tree • As the tree becomes linear, searches and insertions degrade to linear • A BST can be rebalanced in linear time • Alternatively, a BST can be set up to maintain its balance during insertions

  31. For Friday Parsing Expressions with Recursive Descent Thursday Lab: 8:55-11:30

More Related