1 / 33

Management Unit of the North Sea Mathematical Models (MUMM),

3 rd OSPAR Workshop on Eutrophication Modelling (ICG-EMO) “Transboundary nutrient fluxes” MUMM, Brussels, 07-09 Sep 2009. Belgium contribution Geneviève Lacroix 1 , Kevin Ruddick 1 , Christiane Lancelot 2. Management Unit of the North Sea Mathematical Models (MUMM),

tieve
Download Presentation

Management Unit of the North Sea Mathematical Models (MUMM),

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3rd OSPAR Workshop on Eutrophication Modelling (ICG-EMO) “Transboundary nutrient fluxes” MUMM, Brussels, 07-09 Sep 2009 Belgium contribution Geneviève Lacroix1, Kevin Ruddick1, Christiane Lancelot2 • Management Unit of the North Sea Mathematical Models (MUMM), • Royal Belgian Institute for Natural Sciences (RBINS), • 2. Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB) AMORE 3 Advanced Modeling and Research on Eutrophication) Belgian Science Policy

  2. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ?  Discussion

  3. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ?  Discussion

  4. Forcing: • 6h meteo RF (UKMO/ECMWF) • 01/02 • - Real river input (daily flow) +NL/UK rivers • - small BE/FR • - Weekly SST (BSH) Rivers: Nutrient loads (bi-)monthly Some diff., + NL/UK rivers - small BE/FR MIRO&CO-3D model:setup Configurations “STD” “ICG-EMO” (Lacroix et al. 2007. JMS) PAR attenuation (kPARv1): KPAR=f(chl, TSM, CDOM) model estimated from salinity SeaWiFS seasonal climatology Ecosystem model MIRO-0D (ESA) Hydrodynamic model COHERENS-3D (MUMM) • Open BC • Current, elevation • from CSM 2D • - S, nutrients • imposed (ICES data) • T, biological state var. • gradient 0 • Grid: • 5.8 km long. x 4.6 km lat • 5  layers • Period: • 1991-2006 1993-2002 coupling (Lacroix et al. 2004. JSR) (Lancelot et al. 2005. MEPS)

  5. MIRO model MIRO biogeochemical model (C, N, P, Si cycles) Nutrients: - Nitrate [NO3] - Ammonia [NH4] - Phosphapte [PO4] - Dissolved silica [DSi] Phytoplankton (3 groups): - Diatoms [DA, 3 forms*], - Nanophytoflagellates [NF, 3 forms*], - Phaeocystis colonies [OP, 3 forms*] and mucus [OPM] * 3 forms (Reserve [xR], Functional [xF], Monomeric Substrates [xS]) Zooplankton: - Microzooplankton [MZ] - Copepeods [CP] Bacteria [BC] DOM: - Bacteria-available carbon monomeric substrates [BSC] - Bacteria-available nitrogen monomeric substrates [BSN] - Dissolved organic C, N & P of high (1) and low(2) biodegradability [DC1], [DC2], [DN1], [DN2], [DP1], [DP2] POM: - Particulate organic C, N & P of high (1) and low(2) biodegradability [PC1], [PC2], [PN1], [PN2], [PP1], [PP2] Biogenic Silica [BSi] Benthic diagenesis (C, N, P) (Lancelot et al. 2005. MEPS)

  6. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ?  Discussion

  7. Underestimation? River input? TBNT simulation without small BE rivers (Leie, Ijser) Model validation: surface distribution (BE) Model : mean February Data: 4-6 February 2002 (BELGICA campaign BE2002/02A) - BMDC mmolP/m³ mmolN/m³

  8. +15d Mean April Underestimation? Timing? River input? Nutrient underestimation Model validation: surface distribution (BE) Model : 27 March Data: 26-27 March 2002 (campaign BE2002/08A) - BMDC mgChl/m³ 27 March

  9. Model validation:time series (BE) Station 330 1993-2002 Data from BMDC

  10. Model validation:time series (NL) Model: mean 1993-2002 RIKZ data: 1991-2004 Noordwijk 2km Noordwijk 10km Noordwijk 20km

  11. Model validation:time series (NL) Station Noordwijk 10km 1993-2002 Data from RIKZ

  12. Improvements with RECOLOUR (2003-2006) ! Model validation:time series (UK) Dec 2000-2002 Data from CEFAS Western Gabbard (>08/2002) Gabbard (<08/2002) Warp

  13. Model validation:time series (UK) Western Gabbard (>08/2002) • TSM • In ‘Standard’ (ICG-EMO), TSM used for kPAR from seasonal SeaWiFS climatology (97-03) • IMPROVEMENT with ‘RECOLOUR’ TSM • EOFs used to fill the gaps between RS data (clouds,...) • high spatio-temporal resolution (ex. daily) ‘RECOLOUR’ daily TSM 2003-2006 from MODIS Warp Gabbard (<08/2002) Improvements with RECOLOUR (2003-2006) !

  14. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ?  Discussion

  15. NLO1 NLC2 UKO1 NLC1 BO1 UKC1 BC1 UKC7 FC2 FO1 TBNT setup:Target areas

  16. RNL1 RUK1 NLO1 NLC2 UKO1 NLC1 BO1 UKC1 Not ‘tagged’ BC1 RBE UKC7 FC2 FO1 RFR1 TBNT setup:Rivers

  17. NBC1 NBC2 0,05 sv 0,005 sv NLO1 NLC2 UKO1 0,0005 sv NLC1 BO1 UKC1 BC1 UKC7 WBC3 FC2 FO1 WBC2 WBC1 TBNT results:transport across transects (2002)

  18. TBNT results:nutrient fluxes computation For all target areas (2002) • Monthly mean (29.5 days) • Fluxes across transects & national boundaries • DIN, DON, PON  Ntot • DIP, DOP, POP  Ptot • Fluxes between water column & benthos • Ntot, Ptot • Daily • River loads (DIN, DIP, Norg, Porg  Ntot, Ptot) • RBE  NLC1 • RNL1  NLC2 • RFR1  FR2 • RUK1  UKC1, UKC7, UKC9 • Temporal average: • Growing season (Mar-Sep) • Winter (Oct-Feb) • - Annual

  19. TBNT results:nutrient ‘transport’ fluxes BC1 Seasonal differences (magnitude & direction for Ntot) ‘transport’ across transects 4.9 kTN/y 5.7 kTP/y

  20. TBNT results:nutrient budget BC1 Seasonal differences (magnitude & direction) ‘transport’ across transects river input (not in all areas) ‘transport’ across transects

  21. ~ denitrification << ‘Transects’ winter > growing seasonal var. winter: - < ‘Transects TBNT results:nutrient budget all target areas + import - export TOTAL ~// transects

  22. (NL –> UK) 4894 m³/s 16 kTN/y 9.19 kTP/y NOOS transects 0,05 sv NOOS 12 UK –> BE 234 m³/s -0.49 kTN/y 0.65 kTP/y National boundaries 0,05 sv 0,0005 sv NOOS 14 NOOS 13 BE –> NL 49623 m³/s 197 kTN/y 100.60 kTP/y FR –> BE 49324 m³/s 193 kTN/y 99.68 kTP/y FR –> UK 13300 m³/s 48 kTN/y 27.05 kTP/y NOOS14 NOOS13 NOOS12 Volume (m3/s) 93219 94751 97919 Ntot (kTN/y) 235 353 637 Ptot (kTP/y) 187.74 193.20 209.35 TBNT results: transport across national bound. + NOOS transects Annual mean (2002) NLO1 NLC2 UKO1 NLC1 BO1 UKC1 BC1 UKC7 FC2 FO1

  23. Mean NPP ~ proportional to nutrient conc. exepted BC1 & UKC1 Stronger light limitation? TBNT results:mean nutrient & NPP

  24. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ?  Discussion

  25. 52.5 52 51.5 51 Latitude (°N) 50.5 50 49.5 49 48.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Longitude (°E) depth (m) Water mass contribution:setup To determine the origin of the waters and the relative contribution of the rivers  1°) passive tracers NBC water RUK1 Thames + 16 rivers RNL1 North Sea Canal Rhine Meuse Initial water RBE Scheldt RFR1 Canche Authie Somme Seine Initial water WBC water

  26. WBC: 77 %  98 % Water mass contribution:results (2002) NBC: 1 %  20 % (UKC1) River contribution 1 %  6 % (C) NLC1 UKO1 UKC1 BC1 UKC7 BO1 FC2 FO1

  27. WBC: 77 %  98 % Water mass contribution:results (2002) NBC: 1 %  20 % (UKC1) River contribution 1 %  6 % (C) NLC1 UKO1 UKC1 BC1: 50 % from RBE & RNL1 45 % from RFR1 5 % from RUK1 BC1 UKC7 BO1: 17 % from RBE & RNL1 69 % from RFR1 14 % from RUK1 BO1 FC2 FO1

  28. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ?  Discussion

  29. -1% N & P NBC  Run TNB 52.5 52 -1% N & P RUK1  Run TUK 51.5 51 -1% N & P WBC  Run TWB -1% N & P RNL1  Run TNL Latitude (°N) 50.5 50 -1% N & P RBE  Run TBE 49.5 49 -1% N & P RFR1  Run TFR 48.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Longitude (°E) depth (m) Nutrient origin:setup To determine the origin of the nutrients and the relative contribution of the rivers  2°) sensitivity analysis NBC water RUK1 Thames + 16 rivers RNL1 North Sea Canal Rhine Meuse Initial water RBE Scheldt RFR1 Canche Authie Somme Seine Initial water WBC water 1997-2002 -1 %  linearity

  30. Nutrient origin:preliminary results SENSITIVITY ANALYSIS BC1 impact NPP: RBE >> RNL1~RFR1 impact nutrients: RBE ~ RFR1 > RNL1 BO1 impact RFR1 >> TBE TNL TFR TUK No TWB TNB 2000 When all results  % of variability due to each ‘contributor’

  31. MIRO&CO-3D model: setup • Standard run: validation Time series (NL, UK, BE) / surface distribution (BE) • Standard run: TBNT • Water mass origin: passive tracer • Nutrient origin: sensitivity analysis (-1% river input) • Conclusions - ? Discussion

  32. Validation:Bloom timing (importance TSM)Underestimation ChlMax Conclusions • TBNT: • Water transport: FR  BE, BE NL, UK BE (<<<), FR UK(<) • Nutrient transport: // except N (BE UK) • N & P budget: Seasonal differences (magnitude & direction) • Total annual budget // fluxes across transects • River contribution to total annual budget <<< transport across transects • Benthos fluxes of N ~= transport across transects • Benthos fluxes of P << transport across transects • Water mass contribution: • Significant contribution of ‘Atlantic water’ (river contribution: 1% - 6%) • As ‘expected’ contribution of national rivers  national target areas • Origin nutrients: • Previous study: Atlantic water contribution  BE waters (~60% PO4, ~50 % DIN) • - Preliminary results: Significant contribution of RBE & RNL1 (C), RFR1 (O)  BE waters

  33. Questions for discussion • Comparison between models - Objective validation (Taylor diagram?) - If they are differences between model results (TBNT)  how to determine origin of differences • Sensibility to BC? • Interannual variability?

More Related